The Calc Programming Language

Mark Mcllroy

ISBN: 9798354449699
Independently published
Edition 7

Revised up to version 5.8 of the Calc language.

To access the Calc system and additional resources go to:

calc.aitkencv.com

CONTENTS

© © N o gk~ w0 D E

[
N PO

13.

Introduction

A simple program

Global statements
Variables and data types
Functions

Assignment operations
Control flow statements
Boolean expressions
Numerical data types

Strings

. Dates, times and datetimes

Type conversions

Arrays

13.1. Fixed arrays

13.2. Resizable arrays

16.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

‘object’ variables

Object Orientated Programming
User-defined types

Bit operations

Binary data

Links

Lists

Conditional compilation

Performance issues

Data type and declaration summary

Linked data items

23.1. Linked lists

23.2. Bitstream trees

24.

Function examples

11
18
21
26
27
37
41
46
49
52
53
53
55
58
59
62
64
68
68
75
84
86
90
91
92
95
96

24.1.
24.2.

Sorting

Vectors

25. Databases

26. Calling Calc code from a text string

27. A 2-page introduction to web pages

28. Reference information

29. The Wattleglen Calc compiler

30. The Wattleglen Calc interpreter
31. Standard library

31.1.
31.2.
31.3.
31.4.
31.5.
31.6.
31.7.
31.8.
31.9.

31.10.
31.11.
31.12.
31.13.
31.14.
31.15.
31.16.
31.17.
31.18.

Input/Output
Strings
Mathematics
Dates & times
‘Binary’ data type
Database

Internet

Forms

Data type conversions
Bit functions
Miscellaneous
System functions
‘list and ‘llist’ types
Vectors

Vectors of strings
Statistics

Finance

Printed output

32. Commentary

33. Complete program examples

34. Applications: Finite State Automata

96

99
100
102
102
105
116
120
121
121
125
130
140
147
148
151
152
154
158
159
160
162
168
171
172
173
175
178
179
184

35. Language grammar 187
36. Future expansion 197
37. Licence 199

1. Introduction

Calc is a general purpose programming language developed in 2022 by the
author. The language is suitable for application development.

Calc can also be used for system-level code where performance is not highly
critical, for example device drivers for a printer.

This book is an introduction to the language and covers all the features of Calc.

It is recommended that this book be read along with viewing the example
programs and the standard library header file.

The Design goals of Calc are:

Minimalism - to be easy to learn, read and maintain.
Reliability — a stable compiler that produces stable code, with rare
crashes in application code reduced or eliminated.

e Programmer productivity - true string, boolean, date and decimal data
types and features to assist with locating bugs as quickly as possible.

e Performance - Calc is primarily a compiled language. However it can also
run by an interpreter. Calc code compiles to C code which can be
compiled by any C compiler. This approach generates faster programs
than languages that are interpreted or use a virtual machine.

e Wide platform availability - Calc can run on any platform that has a C
compiler.

e Reentrancy - all language structures and library subroutines should be
reentrant, i.e. the output of a function should depend only on the
parameters that are passed to it, not internally stored data from previous
function calls or global variables. Reentrancy has benefits in program
reliability and also means that a function can be called from different
parts of a program, or from different programs, with overlapping timing
and function correctly.

e Orthogonality - any token combination that makes practical sense should
be compileable into correct working code. For example, the assignment
operator a = b is valid for all types in Calc including objects and arrays.

e Memory corruptions should be reduced or impossible. This type of bug is
time consuming to locate and can cause rare crashes that are never
located. A long term goal of the development of the compiler is that
memory corruptions should be impossible.

Calc has a number of unique features such as links, object and array
assignment, a true decimal data type, and a lack of unstructured control flow
statements.

Language features

e Strong type checking at compile time to detect errors in code and also
enable improved performance.

e Compiling and checking the entire source file when called, avoiding
crashes when rarely used code runs.

e A preference for English words, e.g. 'and', 'or' to make code more
readable.

e Detection of common bugs, e.g. re-use of loop control variables in an
inner loop, array bounds overflow, infinite loops, mixed ‘and’ and ‘or’
without brackets.

e Avoidance of language features to improve reliability: variant variables,
variable length function arguments, pointer assignment to random
values.

e Statement oriented rather than expression orientated to simplify the
program code and make it more readable.

e Integer and boolean data types are completely separate in Calc. This
avoids many bugs that are time-consuming to locate in other languages.

e Calc follows the principles of Structured Programming, which generally
increases program reliability and makes code easier to maintain. Control
flow is directed by statements such as 'if' and 'while' which operate on
blocks of code. There are no unstructured control flow steps (such as
‘break’, ‘continue’ and early 'return’ statements).

e Both compile-time and run-time error messages identify the line in the
program source code where the error occurred.

e Calc programs do not require a run-time environment to be installed. This
considerably simplifies distribution and updating of systems.

e Many modern languages have ‘exceptions’ for error handling. Calc
intentionally does not handle errors in this way, errors need to be
handled in Calc by setting the value of variables, such as a value that is
returned from a function.

e A Calc program can detect almost all program errors that can produce a
memory corruption, including:

o

@)
@)
@)

Array bounds overflow.

Attempting to free a data block twice.

Attempting to access a data block that has been freed.
Attempting to access or free a link variable that is set to
NULL_LINK.

Assigning a link value from a ‘link to general’ to a link of the
incorrect type.

Link data types in different files with the same name but different
members.

The name of the language is derived from the fact that the Calc project initially
began as a project to develop a macro language for my online calculator.

However, | decided to take the opportunity to fulfil a long-held ambition and
develop a full programming language that could be used in software
development projects.

2. A simple program

The following program prints the numbers from 1 to 10.

include “stdlib.calch”;

module name sample program;

module type main;

link module stdlib;
function int main(int argc, resizable array of
string argv)
var int 1i;

for (i=1 to 10)
print(i);

A description of this program line-by-line is:
include “stdlib.calch”;
This include statement is used to read program code from another file. The

“stdlib.calch” file contains declarations of the standard library, which contains
approximately 500 functions.

module name sample program;

A name for this source code file. This is optional if the module is not linked to
other modules in the program.

module type main;

The type of the source file. Each project must have exactly one “main” type

source file.

If this source code line is missing it defaults to “main”.

If the calc project is a stand-alone project, it must have a ‘main()’ function which
must be in the ‘module_type “main” file.

If it is linked into a larger system, there should be no ‘main()’ function however

the project still needs a ‘module_type “main”™ file.

All other files in the project should have a module_type of “secondary”.

link module stdlib;

This line of code indicates that the project will be linked with the ‘stdlib’ module
(standard library).

function int main(int argc, resizable array of
string argv)

This line of code defines a function with the name “main”. Each project must
have exactly one function named “main”, which is called by the system to start
execution of the program.

The parameters to main, “argc” and “argv” contain the values, if any, passed on
the command line when the program is called.

var int 1i;

A computer program consists of variables and operations on those variables.

@y

This line of code declares a variable named “”, of type “int” (i.e. a numeric value,
whole numbers only).

for (i=1 to 10)

This line of code specifies a “for” loop. For loops are used to repeat a section of
program code.

10

In this example, the code following the “for” statement is repeated 10 times, each

time setting the “i” variable to a new value increasing from 1 up to 10.

If more than one statement needs to be repeated, the statements should be
enclosed in braces as below:

for (i=1 to 10)
{

print (1);
print(i * 2);

In this example all the statements within the braces “{*, “}" are repeated 10 times.

print(1);

This line of code prints a value to the output, followed by a newline.

For performance reasons the 'to' value of a for statement is only evaluated once,
before the loop commences.

The ‘for’ statement is Calc is intentionally simple to enable code to be written
more quickly, and to enable high-performance implementation.

More complex loop structures can be coded with the ‘while’ loop structure.

3. Global statements

The global statements in Calc can be included anywhere in a source code file,
outside of function definitions.

The global statements are as below:

11

e Include “filename.calch”;
As described in the previous section this statement is used to include program
code from another file into the file being compiled.

e Comments
Calc supports two types of comments. Comments are items of text within a
program file that are intended for a human reader and are ignored by the

compiler.

/I text until end of line

The /' token starts a comment, which continues until the end of the line.

/*
*/
The “/*” token starts a comment which continues until a “*/” token is read.
These comments may be nested, for example:
/-k
Start comment
/*
A comment within the main comment
*/
*/
e module_type

As described in the previous section.

e module_name name;

12

As described in the previous section.

e link_module modulel;
To combine multiple source code files into a single Calc project, follow this
procedure:
1. Include a
module_name “xxxx”
statement at the top of each source code file, with a different name for
each file.
2. In the main file, include a:

module_type main;

statement at the top of the file and a function:

function int main(int argc, resizable array of string argv)

{
.
3. In every other source code file, include a:

module_type secondary;

statement at the top of the file.

4. In the main file, include a

13

link_module modulenamel;

statement at the top of the file for each of the secondary files.

e const

The “const” keyword specifies a constant value. It is generally good
programming practice to use “const’ statements wherever possible, especially
when a value appears several times in different parts of a program.

For example:

const double PI = 3.14159;

14

The format of constants for each data type in Calc are:

Data type Constant format
int, 123

short int,

medium int,

byte

double, 123.56, 1.0el0
float

long double

decimal 123456.12

hexadecimal constants OXFFFF
(integer types)

binary constants 0b10010
(integer types)

string "abcde"

The following escape sequences are recognised in strings:

\n Newline

\r Carriage return
\t Tab

\" Double quote

A\ Backslash

date '2021-01-01"
[must be 12 characters including the quotes.
Year-month-day.]

time '14:00:00"

[must be 10 characters including the quotes.
24 hour time.]

datetime '2021-01-01 14:00:00"
[must be 21 characters including the quotes.]

bool true, false

Numeric constants recognise the following operators:
constant-name () +-*/"
including arithmetic precedence.

String constants recognise the following operators:
constant-name () &

All other constants must be direct constant values, or a previous
constant name.

type

User-defined types are declared at the global file level, see the following
sections.

function declarations

Functions must be declared earlier in the file before they are called,
either by including the whole function or by declaring the function name

and parameters, for example:

function int f1(int x1, int x2);

var
Variables may be declared at the global level, i.e. outside a function.

In these cases the data item will be available in any function throughout
the system.

If a global variable is to be used in more than one source code file, it
must be declared normally in one source file only and should be declared
with the ‘extern’ keyword in each other source file that will access that
variable.

16

For example:
File 1:

var int run mode;

File 2:

extern var int run mode;

File 3:

extern var int run mode;

File 4:

extern var int run mode;

17

4. Variables and data types

The simple data types in Calc are:

Integer types:

byte
short int
medium int
int

Floating-point
types:

float
double
long double

decimal

string

bool

binary

date

time

datetime

Integer, i.e. whole numbers only.

On 64 bit systems the maximum value for the int
type is a 19 digit number.

Some library functions convert numbers to

floating point which have a maximum precision
of 15 digits.

Floating point numbers for scientific
calculations, for example 10.50 or 1.23e20

A numeric data type for money calculations, not
subject to rounding error for addition and
subtraction. This type has two decimal places.

Items of text.

Boolean, ‘true’ or ‘false’.

A block of binary data, e.g. a tree node, a JPEG
image.

A date.

A time.

A point in time with a date and time component.

18

The ranges for the numeric types are:

byte -128 to 127

short_int -32,768 to 32,767

medium_int -2,147,483,648 t0 2,147,483,647

int -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807
float 1038 to 10%8 with 7 digits of precision

double 107308 to 10308 with 14 digits of precision
long_double 104932 to 104932 with 19 digits of precision

If memory usage is not a critical issue, for maximum performance the
recommended numeric data types are int, decimal and double.

For example

var double y;

y = 25.5;

This section of code declares a variable named ‘y’, and then sets it to a value of
255

The data types are described in more detail in the following chapters.

Calc also supports grouped data types, ‘arrays’ and ‘object’ types which are also
described later.

Finally Calc supports ‘links’ which are an advanced usage and are described
towards the end of the book.

Local variables can be declared anywhere in a function. They are available from
the point that they are declared at, to the end of the function.

19

Variables declared outside a function are termed ‘global variables’. These
variables are available from the point that they are declared to the end of the
source file, and in other source files if declared with the ‘extern’ keyword in the
other source file.

In cases where there is a global variable and a local variable with the same

name, two separate variables will exist. Within the function that the local variable

is declared, references to that variable name will refer to the value of the local

variable.

Variables can be given an initial value when they are declared.

For example:

var int x,

If a variable is not initialised in the program, the compiler will generate code to
set the initial value of variables as below:

Type

int

short_int
medium_int
byte
decimal
float

double
long_double
bool

string

date

time
datetime
binary

Initialisation on
(the default)

O O OO0 OoOOoOOo

q,
>
)
D

NULL_DATE
NULL_TIME

NULL_DATETIME

empty variable

Initialisations off

random value
random value
random value
random value
random value
random value
random value
random value
random value
empty variable
empty variable
empty variable
empty variable
empty variable

20

This variable initialisation can be switched off with a compiler switch to improve
the speed of performance-critical software.

5. Functions
Program code within Calc is grouped into “functions”.

A function is a block of code which can be called from another location within the
program.

All code within Calc, except for global statements, must be within a function.
An example of a function is:
function int f1(int x1, int x2)
{
var int i;
i = 2;

result = x1 * x2 * 1i;

Example usage:

A line-by-line description of this function is:

function int f1(int x1, int x2)

This statement defines the start of a function named ‘f1'. It specifies that the
function returns an ‘int’ value, and that it takes two parameters, both of ‘int’ type.

21

If the function does not return a value it should be declared as a “void” type.
For example:

function void f1(int x1, int x2)

var int 1i;

Variables within a function are called ‘local’ variables. They have a value only
within the function that they are declared in.

In cases where there is a global variable and a local variable with the same
name, the two variables may have different values. The local variable value will
be used within the function where that variable is declared.

i = 2;

This statement sets the value of the variable “i” to 2.

result = x1 * x2 * 1i;

The reserved word ‘result’ is used to set the value that is returned from a
function.

The variable result is pre-defined within a function, with the data type that is
returned from that function, and can be used in the same way as other variables
within a function.

In this example the return value of the function is set to the two parameters
multiplied together, multiplied by the local variable “/”

An example usage of this function, this line of code would set the value of the
variable “x” to 12.

22

Calc supports recursion, meaning that a function can call itself. Recursion is
used in many algorithms such as parsing and traversing structures such as
trees.

Recusion can result in very simple functions, however mentally it can be difficult

to follow. Imagine a chain of function calls where each function just happens to
have the same name.

Functions can return any data type including object types and arrays.

If a function returns an object type or array it can be assigned to a variable or
accessed directly.

For example:

functionl(2, 3);

b
Il

functionl(2, 3) [20];

LY
Il

y2 = function2(2, 3).dataiteml;

Calc variables passed to functions can be passed ‘by value’ or ‘by reference’.

The difference between the two passing types is described below:

by reference

When a variable is passed by reference to a function, if the variable’s value is
changed within the function then the variable’s value is also changed in the
function that called it.

Only variable names can be passed by reference, expressions such as ‘x + 2’
cannot be passed by reference.

When a variable is passed by reference, it must have the exact type than the
function is expecting.

23

Objects, fixed arrays and resizable arrays are always passed by reference.

by value
When a variable is passed by value, a copy of the variable is passed into the
function. This means that if the variable is changed within the function being

called, the variable’s value is not changed in the function that called it.

Any simple value in Calc can be passed by value, including variables and
expressions.

The two passing types are specified as follows:

y = f1(ref x); /I pass variable ‘X’ by reference

y = f1(val x); I/l pass variable ‘X’ by value

If the keyword ‘ref’ or ’val’ is not used, the following defaults are used:

By value Simple variables except ‘binary’ type variables, links,
expressions.

By reference ‘binary’ type variables, arrays, objects, resizable arrays.

Unlike most other programming languages, the specification of by-value or by-

reference in Calc is made when a function is called, not when it is defined.

This method allows a function parameter to be passed by value in one part of a
program, and by reference in another part of the same program.

Because ‘by value’ passing creates a copy of the variable’s value, this should not
be used if possible where the variable has a large size, such as a string which

contains the contents of an entire file.

In these cases use ‘f1 (ref str);’ forexample to pass the variable by
reference.

24

There is a compiler option to identify places in a program where this problem
occurs.

Numeric types may be mixed when a variable is passed by value. For example,
and ‘int’ variable or expression may be used when a ‘double’ type is expected.

Naming function call parameters

In cases where constants are used in function calls, the meaning of the value
may not be obvious.

For example consider the code below:

project forward(effective date, client id, 12, true);

In this code the meaning of the first two parameters is fairly obvious. However

what do the ‘12’ and ‘true’ represent?

To determine the answer to this the definition of ‘project_forward() must be
looked up which can be time consuming if this happens hundreds of times.

This situation can also lead to bugs where code is changed incorrectly and the
error is not immediately obvious.

To overcome these problems, function call parameters in Calc can be hamed.
For example the code below can be used in preference to the above example:
project forward(effective date, client id,

number of periods=12,
accumulate balances=true)

If this language feature is used then the names in the function call list must
match the names in the function definition.

25

The ‘name=’"text is for information only, it cannot be used to change the order of
the parameters in the parameter list.

6. Assignment operations
Variables are given a value using the “=" assignment operator.

For example,

x = 30;

In this example the value of the variable will be set to 30.

The expression on the right hand side of the “=” may include other variables,
constants, operators and function calls.

For example;

x = (2 * PI * x2 + f1(45, 50)) / 2;

“_n

In addition to the “=" operator there are five other assignment operators:

+= Add the result of the expression to the variable.
-= Subtract the result of the expression from the variable.
*= Multiply the result of the expression by the variable.

/= Divide the result of the expression into the variable.
&= Concatenate the string on to the end of the variable.
For example:

y += 20;

This statement would add 5 to the value of the variable y;

26

7. Control flow statements

Program execution in Calc starts at the top of a function, and continues down
through each line of code unless redirected by a “control flow” statement.

There are ten types of control flow statement in Calc: “if”, “while”, “do”, “for”,

“repeat’, “switch”, “scan_list”, ‘scan_list_keys’, ‘scan_list_data’ and “scan_db”.

“If” statement

An “if” statement is the most basic control flow statement in Calc, and executes a
statement or set of statements if a condition is true.

For example:

if (x < 1)
print (“x1”);

73 gtl]

This statement will print the text “x1” if the value of the variable “x” is less than
one.

A similar example with a block of code is shown below:

if (x < 1)

{
print (“x1”);
print (“x2”);
print (“x3”);

In this example the “if” condition will apply to the block of code surrounded by the
braces “{* and “}", i.e. all three print statements.

An “if” statement may also have an “else” component, which is executed if the
condition is false.

27

For example:

if (x < 1)

{
print (“x1”);
print (“x2”);
print (“x3”);

else
print (“y1”);

print (“y2”);
print (“y3”);

“If” statements may be chained in a sequence, such as in the example below:

if (x < 1)

print (“x1”);
else
if (x < 2)

print (“x2”);
else
if (x < 3)

print (“x3”);
else

print (“x4”);

In this example only one of the “print” statements will be executed, depending on
the value of the variable “x”.

“While” statement

The “while” statement is the simplest and most flexible looping structure in Calc.

This statement repeats a block of code multiple times until the condition
becomes false.

For example:

y = 1;
28

while (y <= 20)
{
print(y);
y =y + 1;

This code would print the numbers from 1 to 20, i.e. it would continually repeat

[T]

the block of code until the variable “y” was not less than or equal to 20.

“‘Do” statement

The “do” control structure is similar to the “while” structure, except that the
condition is at the end of the code block. This means that the code block is
always executed at least once.

For example:
y = 1;
do

print(y);
y =y + 1;

}

while (y <= 20);

“For” statement

The “for” statement repeats a statement or block of code a specified number of
times.

For example:

for (i=1 to 10)
print(i)

This statement would repeat the “print” statement 10 times, setting the value of

the control variable “i” to values from 1 through to 10.

A step size may also be specified, as in the example below:

for (x=35 to 45 step 0.5)
print(i)

This statement would repeat the “print” statement 21 times, setting the value of
the control variable “x” to values from 35 through to 45 in steps of 0.5.

The control variable must be a numeric type.

If the step size is not specified it defaults to +1.

The step size may be a negative number.

"

For performance reasons the “from”, “to” and “step” values are only evaluated
once, before the loop commences.

If the difference between the start and end values is not an exact multiple of the

step size, the loop is interpreted as:

while (current value <= end value) for positive step sizes
while (current value >= end value) for negative step sizes
To avoid potential bugs the control variable cannot have its value altered inside

the loop, and cannot be used as the control variable of an inner loop within the
main loop.

‘Repeat’ statement

A repeat statement is applicable when a count of the number of times that the
loop has executed is not required.

30

The syntax is:

repeat numeric-expression times
Statement

As with all language elements the ‘statement’ may be a single statement or
multiple statements enclosed in braces ‘{', }.

For example:

repeat 10 times
print (“12”7);

A ‘repeat’ loop is slightly faster than a ‘for’ loop and so should be used where
applicable.

“Switch” statement

A “switch” statement executes a statement or block of code depending on the
value of an expression.

For example:
switch (x)
{

case 1:

print ("1");

case 2:
print ("2");

case 3, 5, o6:

print ("3");

print ("4");

default:
print ("5");

This code has the following effect:

Check the value of “x”. This may be a full expression.
If the value is 1, print “1”.

If the value is 2, print “2”.

If the value is 3, 5 or 6 print “3” then print “4”.

If the value is none of the values above, print “5”.

abrwbdE

The “default” section of code is optional. If it is present it must be the last section
in the “switch” statement, and it is executed if none of the other statements are
true.

Each ‘case’ section runs a single statement. If multiple statements are required,
they can be enclosed in braces ‘{' ‘}.

All simple Calc data types can be used in ‘switch’ expressions.

‘Scan_list keys’ statement

The ‘scan_list_keys’ statement is used to scan through the keys of the items in a
list.

The ‘scan_list_keys’ statement repeats a statement or block of statements for
each key in the list.

For example:

scan_list keys(string or int variable in

object type variable)
{

32

The ‘object_type_variable’ is the key item of the structure, and can be an
aggregate expression such as x[35]. The ‘string_or_int_variable’ must be a
simple variable name.

The scan_list statement has an optional direction parameter, to determine
whether the scan is in ascending order or descending order of the keys.

/l ascending order

scan_list keys(string or int variable in
object type variable, true)

// descending order

scan_list keys(string or int variable in
object type variable, false)

The direction parameter, if present, must be a boolean constant.

‘Scan_list data’ statement

The ‘Scan_list_data’ statement is used to scan through the data items that have
been inserted into a list.

The ‘Scan_list_data’ statement repeats a statement or block of statements for
each data item in the list.

For example:

33

scan_list data (link variable in object type variable)

{

The ‘object_type_variable’ is the key item of the structure, and can be an
aggregate expression such as x[35]. The ‘link_variable’ must be a simple
variable name.
The scan_list statement has an optional direction parameter, to determine
whether the scan is in ascending order or descending order of the keys.

/l ascending order
scan_list (link variable in object type variable, true)
{

/I descending order

scan_list (link variable in object type variable, false)
{

The direction parameter, if present, must be a boolean constant.

‘Scan_list’ statement

The ‘scan’ statement is used to scan through linked data structures, see the
section on Linked Data Structures.

The ‘scan’ statement repeats a statement or block of statements for each item in

a data structure.

For example:

34

scan_list (item type variable in object type variable)

{

The ‘object_type_variable’ is the key item of the structure, and can be an
aggregate expression such as x[35]. The ‘item_type variable’ must be a simple
variable name.

The scan_list statement has an optional direction parameter, to determine
whether the scan is in ascending order or descending order of the keys.

/l ascending order

scan_list (item type variable in object type variable,
true)

/I descending order

scan_list (item type variable in object type variable,
false)

The direction parameter, if present, must be a boolean constant.

‘Scan_db’ statement

The ‘scan_db’ statement is used to scan through a list of records returned from a
database query.

For example:

35

var db_connection cxn;

var db query result resultl;
var db row data;

var string query;

var int 1i;

calc mysgl init();
cxXn = db_login(DATABASE_NAME, USERNAME, PASSWORD) ;

query = "SELECT * FROM client details ORDER BY client name

LI
’

scan db(resultl, gquery, data, cxn, 1)
{
print(1 & “: ™ & db get field string("client name",
data)) ;

The scan_db statement comes in two forms:

scan _db(result resultl,
string query,
db row data,
db connection cxn)
or

scan _db(result resultl,
string query,
db row data,
db_connection cxn,
int i)

The only parameters that need to have a value before the loop executes are the
second parameter, which is the query string, and the fourth parameter, which is
the database connection.

36

The database must have been opened before the data access code is run.

The value of the 'data’ parameter in this example will be set to the next record
on each iteration of the loop.

If a counter variable is present, 'i" in this example, it will be set to 0 the first time
the loop code executes, 1 on the next cycle and so on.

After the loop finishes the counter variable will have a value equal to the number
of times that the loop has cycled through.

Each parameter except the query string must be a variable name.
As with ‘for’ statements, a control variable cannot be used as a control variable in
an inner ‘scan_db’ or ‘for’ statement, and it cannot have a value assigned to it

inside the loop.

Do not use this statement for update SQL queries such as INSERT or UPDATE
statements.

8. Boolean expressions

All the control structures except switch operate on a “boolean expression”.

A boolean expression is an expression that can have only one of two values: true
or false.

For example:

if (x < 1)

This expression “x < 1”7 is true if the value of “x” is less than one, and false
otherwise.

The relational and boolean operators are:

37

Expression Effect

relational operators

X ==y true 1if “x” equals “y”

x =y true 1if “x” is not equal to “y”

x <y true 1if “x” is less than “y”

X <=y true 1if “x” is less than or equal to “y”

X >y true if “x” is greater than “y”

X >=y true if “x” 1is greater than or equal to
w7

boolean operators

x and y true if “x” is true and “y” is also true

X or y true if “x” is true or “y” is true or both
are true

X XOr Yy true if “x” is true and “y” is false, or
“x” is false and “y” is true

not x true if “x” is false

x in {exprl, expr2, expr3,...} true if “x” is equal to

any of the values in the list. Both
“x” and the list of values may be
full expressions.

x not in {exprl, expr2, expr3,...}true if “x” is not
equal to any of the values in the
list. Both “x” and the list of

values may be full expressions.

For example

if (x < y and x > y2 and not eof)
print (“x”);
The ‘not’ operator is a high-precedence operator. This means that:

38

if (not a or b)

Isparsedas if ((not a) or b).

If this is not the required expression, brackets should be used.

For example:

if (not (a or b))

Calc supports a boolean data type for variables.

For example:

var bool eof; // variable named “eof”, of type
“bool”

eof = false;

while (not eof)
{

As boolean expressions have a value, the following code is valid:

var bool x;

In this statement, the expression “y < 1” evaluates to ‘true’ or ‘false’, and this
value is set to the variable ‘X'.

39

The equal ‘=="and not equal ‘!=" operators can operate on any simple data type.

The comparison operators ‘<’, ‘<=", *>’, *>=" can operate on numeric types,
strings, dates, times and datetimes.

The ‘in’ operator

Calc includes a set operator. This is used as follows:
if (x in {1, 2, 3, 4})

This evaluates to true if ‘X’ is equal to any item in the set.

To check for not in a set, use

if (x not in {1, 2, 3, 4})

This evaluates to true if ‘X’ is not equal to any item in the set.

Any simple data type can be used with the ‘in’ operator, and the set items may
be full expressions.

The set operator may be faster than using multiple ‘if — else’ operators, and also
makes the program code clearer.

40

9. Numerical data types

Calc supports eight numerical data types:

int Integer type

short_int Integer type

medium_int Integer type

byte Integer type

decimal Fixed-point integer with two decimal places
float Floating-point type

double Floating-point type

long_double Floating-point type

Integer types are numeric data type for whole numbers only (positive, negative or
zero).

“decimal’ is a data type that is suitable for money calculations. It has a fixed
number of decimal places (two) and gives exact calculation results.

Floating-point types are used for scientific calculations and any calculations that
require a fractional component, suchasx = y * 0.5;

Floating-point types

‘double’ is the recommended floating-point type for general usage.

‘double’ values support numbers with decimal components, such as
100.1045982 Including an exponential value from approximately 10-38 to 1038

The precision of double values used in Calc is approximately 14 digits.

Care should be taken when using “==" and “I=" on floating-point types as
calculation results may not be exact.

For example, x = x + 0.2 repeated 10,000,001 times should equal 2,000,000.2

However, using double-precision floating point binary arithmetic this actually
results in a value of 2,000,000.199678

41

This is because the floating point values are stored in binary format, and the
value 0.2 does not have an exact representation in binary notation.

This effect is a fundamental limitation of floating point binary arithmetic.

In another example:

var double x, vy;

x = 0.2;
y = 0.4;
if (2 * x == vy)

This example should result in ‘true’. However, due to the rounding issue with
numbers such as 0.2, if executed in code this code segment would result in
false.

If the ‘decimal’ data type was used, the correct answer would occur.

Exact results also occur for integer data types, and floating-point values that are

whole numbers.
To compare floating-point values use a tolerance, such as

if (mabs(x - y) < 0.000000001)

42

Operators

The arithmetic operators are:

+ Addition

- Subtraction

* Multiplication
/ Division

x to the power of y
mod Modulus

The Modulus operator means: “if x is divided by y as an integer division, what
would the remainder be”.

For example, 10 mod 3 equals 1, because 10/3 as an integer division is 3, and
10 - 3*3 equals 1.

This seemingly strange definition is actually extremely useful and is widely used
in algorithms.

For example:
1. Determine whether a number is even or odd.
if (x mod 2 == 0) // if x 1s an even number

if (x mod 2 == 1) // 1f x 1s an odd number

2. Allocate a large set of numbers into a smaller number of buckets.

bucket number = x mod 10; // group numbers ‘x’ into
// 10 buckets

Division

Attempting to divide a number by zero will generate a run-time error, which
includes the source code file and line number where the error occurred.

43

Division of integer types is a special case. In many languages a division 1 /5
results in 0, because integer types don’t store fractional components. There is
usually a warning however.

In Calc, division of integer types is converted to type ‘long_double’, which
includes the fractional component.

In Calc this example would be 1 /5 = 0.2, with the result of the division being a
value of 0.2 with a type of ‘long_double’.

Assignment to integer types

If a floating-point value is assigned to an integer type, the fractional part is
truncated not rounded.

For example:

var int 1i;

This code would print 1.

Literal values
Numbers appearing directly in a program are known as literal values.

If a numeric constant does not contain a decimal point it is interpreted as an ‘int’
type, and if it contains a decimal point it is interpreted as a ‘double’ value.

For example:

X =1/ 3;

44

This will generate a warning of an integer division and a value of 0, as 1/3

truncated to an integer is O.

To avoid this problem add a ‘.0’ to the end of the number.

For example:
X=1.0/ 3.0

Will generate x = 0.3333333.

Alternatively, the type of a numeric constant can be specified using the following

text after the number

Type Code
byte b
short_int Si
medium_int mi

int i

float f
double db
long_double Id
decimal dc

Increment and decrement

Example

12b
12si
12mi
12i
12.34f
12.34db
12.34ld
12.34dc

The “++” operator means “add one to the variable’s value”.

The “--” operator means “subtract one from the variable’s value”.

For example

45

print(x);
This code would print the value 2.

The increment and decrement operators may also be used in expressions. When
the operator is after the variable name it adds or subtracts after the variable’s
value is read for the expression, and when the operator is before the variable
name it performs the operation before the variable is read for the expression.

For example
x = 20;
y = 20;

print (x++);
print (++y)

This code would print the values 20 and 21.

10. Strings

Strings within Calc are variables holding items of text.
For example:

var string sl;

sl = “abc”;

print (sl);

This code would print the text “abc”.

Fixed string values must be surrounded by double quotes.

46

The following escape sequences are recognised in strings:

\n Newline

\r Carriage return
\t Tab

\" Double quote
\\ Backslash

For example,

print (“abc\ndef”);

This would print “abc”, then a newline (move to the next line), then “def”.

Concatenating strings

The concatenation operator “&” combines the value of two strings.
For example
var string sl, s2;

sl “abc”;
s2 “def”;

print(sl & “:” & s2);

This code would print the text “abc:def”.

There is also a concatenation assignment operator “&=" which appends the
value of the expression to the variable.

For example
var string sl;

s1 = “123";

a7

sl &= “:456” & “:78910";
print (sl);

This code would print the text “123:456:78910”.

Substrings

To divide strings into parts use the sleft (), sright (),
sright from pos() and smid () library functions.

For example
var string sl;

sl

“123456789";

sl

sleft(sl1, 4);

print (sl);

This code would print the text “1234”.

sleft(s, n) return the leftmost ‘n’ characters from the string.
sright(s, n) return the rightmost ‘n’ characters from the string.
sright from pos(s, start pos) return the rightmost characters

from the string, starting from and including the character at position ‘start_pos’.

“an

smid(s, x, y) returns a substring from the string “s” starting at position

x”, with length “y”.
schar(s, n) returns a one-character string from position ‘n’ in the

string ‘s’;

String positions start at 0, meaning the first character.
48

slength (s) returns the number of characters in a string.

schar() is slightly faster than smid() so it should be used in preference to smid()
when a single-character string is required.

Foreign language text

Calc fully supports foreign language text.

Information read from text files and web page forms is assumed to be in ASCII or
UTF-8 format.

This includes the full Unicode character set.

The string functions such as sleft () operate on Unicode code points.

In general this means that sleft (str, 5), for example, would return the
left-most 5 printable characters from the string and slength (str) would
return the number of printable characters in the string (including whitespace

characters).

There are some exceptions such as the code for a flag of a country, which
occupies two code points.

Foreign language characters can be included in source code files within double
guotes if the source code file is saved in UTF-8 format.

The relational operators <, >, <= and >= are only effective on strings of ASCII
characters.

11. Dates, times and datetimes

Calc includes data types for dates, times and a combined date-time.

49

The data type names are “date”, “time” and “datetime”.
The constant values should be surrounded by single quotes.

They are specified as:

YYYY-MM-DD’ For date constants
‘HH:mm:SS’ For time constants
YYYY-MM-DD HH:mm:SS’ For datetime constants

Where

YYYY means the year

MM means the month

DD means the day of the month

HH means the hour, 0 to 23

mm means the minute

SS means the second

These types can be compared with the relational operators “==", “1=", “<”, “<=",

ii>” and “>=”-

Calculations with dates and times require the use of library functions such as
dadd(), which adds a number of periods to a date.

For example,

var date dl;

dl = '2022-01-01";
dl = dadd(d1, “days”, 9);
print (d1);

This code would print the value 2022-01-10, meaning the tenth of January 2022.

50

To format dates and times into required formats use the dformat (),
tformat () or dtformat () c library functions.

For example:

var date dl;
dl = '2022-01-01";

print (dformat(41, ™

o°
0]

o°
’_J

o°
o
o°
=

This code would print “1st January 2022”.

The dformat () function takes a definition of the format required with a large
range of options.

Date variables can be set to NULL_DATE, NULL_TIME or NULL_DATETIME to
indicate that the variable does not contain a valid value.

This is the case for example when retrieving data from a database and a date
value is blank.

Timezones

To adjust for timezones, use the ddtadd() or ddtsub() to add or subtract the
required number of hours to convert the datetime value into the required

timezone.

These functions change the date if the other timezone is currently one day
forward or behind.

For example,
var datetime dt;

dt = '2025-03-01 10:00:00";

51

print (ddtsub(dt, "hours", 14));
This code would print the effective date for 14 hours behind, being:

2025-02-28 20:00:00

12. Type conversions

Calc is a strongly typed language. This is to detect and prevent bugs within
source programs, and to enable high-performance implementation.

In general an expression must have the type that is required in that particular
context.

For example, the values on the left and right side of an addition operator “+” must
be numeric types.

When a value is passed to a function, it must be of the correct type.
There are a number of exceptions:
e The “print” function can print any simple data type.
e Numeric data types may be mixed, for example an “int” variable could be
used where a “double” value is required. However, if a variable is passed
to a function call as a byreference parameter, it must be the exact type

that is expected by the function.

e Link variables can be declared as “link to general”, which allows any type
of link to be passed to a general purpose function.

If a type conversion is required a library function can be used such as
cstring to date(string str, string format) which converts a
text string into a date value.

52

Aggregate data types

Aggregate variables are data variables that contain several data items within one

variable name.

For example, an ‘array’ is a data type that contains a set of data items, all of the

same type.
The aggregate data types in Calc are:

Array A collection of data items, all of the same type.

List A collection of items which contain links to data variables,

and which can be searched.

Resizable Array A collection of data items, all of the same type (with a

size that can be changed while the program is running).

Object A collection of data items, which may each be of a
different type.

13. Arrays
13.1. Fixed arrays

An array is a set of data items, all of the same type.

In Calc an array variable is declared using syntax similar to the below:

var array [index size 1, index size 2,...] of <datatype>
varnamel, varname2, varname3 etc.

For example:

53

var array [100] of int x;

“y,

The example above defines a variable named “x”, which is an array variable

holding 100 items of type “int”.

To access a specific value in the array, use syntax similar to the below:

y = x[25];

[Tl [Iell

This line of code sets the value of “y” to element number 25 in the “x” array.
Index values start at 0, up to the number of items minus one.

Arrays may be passed to functions by reference, returned from functions, and
copied using a statement similar to

x = vy; // whole array copy

An array may have multiple dimensions, as in the example below:

var array [100, 200, 100] of int x;

y = x[25, 35, 38];

In this example the value x[25, 35, 38] refersto a single item in the array.
By default Calc checks array references to ensure that the index values are not
outside the bounds of the array. This option can be turned off to increase

performance for in-house applications that are calculation-intensive.

All the aggregate data types in Calc are orthogonal. This means that an array, for
example, can contain any data type, including other arrays.

An example of this is the following code:

54

var array [100] of array [200] of int x30;

or
var array [100] of link to array [200] of int x32;

x32[20] = new array [200] of int;

x32[20].[30] = 40;

print (x32[20]1.[30]);

If a chained data declaration contains links and/or resizable arrays, these must

be given a value from left to right before the data items can be accessed (using
‘new’ and ‘setsize’ respectively).

Array Size expressions

Fixed array declarations recognise constant integer expressions for array sizes.
The array dimension size can be composed of:

e Constants of type ‘int’ declared with the ‘const’ keyword.

e Integer numbers.

e The following operators: () +-* /%

Arithmetic precedence is recognised so 2 + 3 * 4 is parsed as 2+ (3 * 4).

For example:

var array [2 * (MAX SECTORS + 3)] of double x;

13.2. Resizable arrays

55

Standard arrays in Calc have a fixed size. Calc also supports resizable arrays
that can have their size changed while the program is running.

A resizable array is declared with a syntax below:

var resizable array of <datatype> varnamel, varname?2,
varname3, ...;

For example:

var resizable array of int x;

The array size is set using syntax below:

setsize variablename <indexsizel, indexsize2, ..>;

For example

setsize x <100, 200>;

Resizable arrays are accessed using the same syntax as fixed arrays.

For example:

y = x[25, 35];

If an array is resized and it already contains data, and the new array has the
same number of dimensions as the old array, the current data is copied into the

new array.

A resize operation can change the number of dimensions of the array, however
in this case existing data is not copied into the new array.

Resizing a large array is a relatively slow operation and should only be
performed when necessary.

56

When to use tmplx, v, z] and when to use tmp[x][y][z]

It is intended that multidimensional arrays in Calc be accessed using the syntax
tmp[x,y, z, ...];

These arrays can be declared using a syntax similar to the below:

var array [100, 100, 100] of double tmp;

However due to the flexibility of the data declarations, it is also possible to
declare multidimensional arrays that can be accessed using an alternative
syntax.

For example:

var array [100] of array [100] of array [100] of double
tmp;

tmp2 = tmp(x][yl[z];

The choice between tmplx, y, z] and tmp[x][y][z] depends on how the variable is
declared.

Two system functions are available to assist with using resizable arrays:

array_number of dimensions(rarray);

This function returns the number of dimensions currently in a resizable array.

array index size(rarray, index number);

This function returns the index size (number of elements) of index number
‘index_number’ in resizable array ‘rarray’.

Index numbers start at one.

57

16. ‘object’ variables

Calc supports ‘object’ types. An object type is a data type which contains several
data items, which may be of different data types.

For example

type x object
{
int a;
string b;
array [100] of int y;

An object type may contain arrays, and arrays can contain object types.

[T]

The individual data items are accessed using the dot “.” operator, such as in the
example below:

type tx object
{

int a;

string b;

array [100] of int y;
bi

var tx vl, v2;

vl.b = “abc”;
vl.y[20] = 30;

v2 = vl; // whole object copy

Object types can be used anywhere in the program, such as as global variables,
local variables, and parameters to functions.

58

Objects may contain other objects.
For example:

type x2 object

{
int x3;
string x4;
object
{

int x5;

b} ox6;

}i

var x2 x10, x12;

x10 = x12; // copy the whole structure
x10.x6 = x12.x6; // copy the inner object only

14. Object Orientated Programming

Calc was initially a procedural language, and the standard library is mostly
procedural.

Calc also supports Object Orientated programming.

This approach allows data items and functions that operate on them to be
grouped into a single object;

For example

type x1 object
{
int x;
int vy;
function int f1(int x1);

59

function string f2(int x2);

The functions within an object are called by placing a dot after the data variable,
similar to below:

var x1 iteml;
var int x;

x = x1.£f1(29);

The data items within an object of this type are known as member variables, and
the functions are known as member functions.

The member functions can be defined with the object as shown below:

type object x1
{
int x;
int y;
function int f1(int x1);
function string f2(int x2)
{
print(x2);

Alternatively a member function can be defined separately as shown below:

type object x1
{
int x;
int y;
function int f1(int x1);
function string f2(int x2);

60

function string x1:f2(int x2)

{
print (x2);

Member functions can access data variables at four levels:

Local variables Declared within a function

Function parameters Passed through the function call
Member variables Declared within an object

Global variables Declared outside functions and objects

A member function cannot have a local variable, member variable or function
parameter with the same name;

A global variable is accessed if there is no local variable, member variable or
function parameter with the same name.

Inheritance

The current version of Calc does not support Object Orientated inheritance
directly.

However class hierarchies can be built in Calc by manually adding entries into
objects.

For example:

type levell object
{

int x;

function void f1 ()

{

print (x);

61

type level2 object
{

levell parent;
int vy;

var level2 x2;
x2.y = 45;

x2.parent.x = 30;
x2.parent.fl () ;

15. User-defined types
A type can be given a name in Calc using the ‘type’ keyword.
The syntax of a user-defined type is:

type type name <data type> ;

Any data type in Calc can be given a name with the ‘type’ keyword.

For example:

type tx object
{
int a;
string b;

62

The “type” declaration is a global statement and must not be inside a function.

Variables declared with a user-defined type can only be assigned to variables of
the same type, and passed to functions that are expecting a parameter of that

type.

With types that are array or object types, variables declared using the user-
defined type name can be accessed normally, for example

Object types

type x2 object
{

string varnamel;
int varname?2;

var x2 X;

x.varnamel = “abcd”;

Array types

type x3 array [100] of int;

var x3 x10;

x10[y] = 45;

When a type is defined that is a simple data type, the internal data can be
accessed using the “.data” operator.

63

For example:

type table key int;

var table key a;

a.data

25;

16. Bit operations

Calc supports “bit” operations. These operations use the “int” data type.

In computing, a “bit” is a binary value that can only have the values 0 or 1.

A “byte” is a collection of eight bits and is typically used to store a single text
character.

The operations on bits are:

and

or

XOor

not

The result bit is
bits are 1

The result bit is
source bits are 1

The result bit is
bit is 1, but not

The result bit is
is O

set to 1

set to 1

set to 1

both are

set to 1

if both source

if either or both

if either source

1

if the source bit

There are a range of library functions for bit operations on “int” values.

In general application programming, the most common usage of bit operations is
to pass a set of options to a general function.

64

For example:

const int MENU TYPE OPTIONL 0b1l;
const int MENU TYPE OPTIONZ2 0b01;
const int MENU TYPE OPTION3 = 0b001;
const int MENU TYPE OPTION4 0b0001;

var int options selected;

options selected = bit or(MENU TYPE OPTIONI1,
MENU TYPE OPTION3);

show menu(“main menu”, options selected);

Or alternatively

show menu(“main menu”, bit or(MENU TYPE OPTIONI,

MENU TYPE OPTION3));

To combine multiple values into a single result code similar to the following can

be used:

x = bit or(x1, bit or(x2, x3));

Number formats

Integer constant values in Calc can be entered in decimal, hexadecimal or binary
formats.

Decimal format is the normal number format such as

20.28

Scientific notation is also supported, such as:

65

1.56e25

Binary digits are 0 or 1, for example

0b100100

66

Hexadecimal is a base-16 number system.
The digit holders for a hexadecimal number are:

Value Hexadecimal digit

© 0O ~NO Ul WDNPEFELO

MMOOT®Y>»© 0N U WNPEO

For example:

0xEF9E

This hexadecimal constant would have the decimal value:
E * (16*16*16) + F * (16*16) + 9 * (16) + E
=14 * (16*16*16) + 15 * (16*16) + 9 * (16) + 14

= 61,342 (decimal)

67

17. Binary data

Calc supports a data type named “binary”. This represents a block of binary data,
such as an image file contents.

The standard library contains functions for setting and reading bits and bytes
within a binary variable.

For example:

var binary bl, b2;

bset size(bl, 100);
bset byte(bl, 10, 38);
b2 = bl;

print (bget byte(b2, 10));

18. Links

Links are an advanced topic and most programs can be written without the use
of links.

A link variable in Calc is a data variable that points to another data object. This is
also known as holding the address of another object.

Link variables can be used to connect two object types to create linked
structures such as linked lists and trees.

Link variables are also used to create data objects which are stored in linked
structures.

This approach is used by the standard library functions for implementing lists.

68

The ‘new’ operator is used to create a new object of the type that the link points
to.

The ‘new’ operator creates a data item, and returns a link to it.

For example:

type t 1 object
{
int a;
string b;
link to t 1 next;

var link to t 1 x1, yl;
xl = new t 1; // create a new object of type “t_1”

xl..next = new t 1; Il create another new object,
pointed to by ‘next’

vyl = x1..next;

free x1..next; /l releases the memory allocated to
/l the object pointed to by x1.next
/I and sets x1.next to NULL_LINK

In this example the double dot has this meaning:

Determine the address held in the variable

First dot — convert this address into data contents
Second dot — access a field of the object type.
Field name — the field name in the object to access

PwnNPRE

The example above creates two new objects of type “t 17, and links them
together using the link variable “next”.

69

1]

Links are followed to their destination data item using the dot “.” operator.

The general rules are, where ‘a’ is a link variable:

a The address pointed to by ‘a’.

a. The contents of the data pointed to by ‘a’.

The syntax for some common combinations, where ‘@’ and ‘b’ are link variables,
are:

a = b; // set ‘a’ to point to the same data object as ‘b’

a. = b.; /I copy the contents of the object pointed to by ‘b’ into the
// object pointed to by ‘a’

X = a.; /I Set the variable ‘x’ to the contents of a simple data type
// pointed to by ‘a’

x = a..fieldl; /I Access the object field ‘field1’ that is pointed to by ‘@’
[/l and copy this value into the variable X’

x = a.[20]; /I Access an array element of the data pointed to by ‘a’
/I and copy this value into the data variable ‘X’

Links can point to any data type.

For example:

var link to int x;

X = new int;

x. = 30;

print (x.);

70

In this example the dot operator “.
which in this case is a ‘int’ value.

Is used to follow the link to its destination,

In the following example, an array and a two-stage link is used to show the
required syntax in this case:

var array [100] of link to link to int x2;

x2[20] = new link to int;
x2[20]. = new int;
x2[20].. = 31;

print (x2[20]..);

Another example uses a link variable to dynamically create an array:
var link to array [100] of string x;

x = new array [100] of string;

x.[20] = 45;

print(x.[20]);

The ‘new’ operator

The ‘new’ operator can create a data item of any data type in Calc. It has the
value of a link to a data item.

For example:

function void functionl(link to int x1);

var y link to string;
var x link to object type 1;

y = new string;

71

y. = “56787;

x = new object type 1;

functionl (new int);

A link variable can be set to NULL_LINK to indicate that it doesn’t point to an
object.

Link to general

Calc is a strongly typed language and all type issues are checked at compile
time, with some exceptions.

General purpose functions that can store different link types can use the ‘link to
general’ type.

For example:

var link to general link ptr;

Any link type can be assigned to a link to general variable, and a link to general

variable can be assigned to any link type.

This functionality is included to allow for general purpose library functions.

To access the data pointed to by a general link, two methods can be used.

Method 1)
Assign the value to a link variable of the correct type and then use that variable.

For example:

72

var link to general glink ptr;
var link to node link ptr;

glink ptr = £f1();
link ptr = glink ptr;

x = link ptr.data item;

Method 2)
Use the link type indicator operator, { type }..
For example:
var link to general link ptr;
x = link ptr {link to node} .data item;
The link type operator ‘name { type } is used to indicate to the compiler the type
of object that a general link points to.
It has the format:
general link variable name {link to <datatype>}.
data item to access
The variable name before the ‘{’ symbol can be an aggregate expression such as

X[40] and must have the type ‘link to general’.

When to use a single dot and when to use a double dot

To access a data item within an object type, use a single dot.

73

To access a data item from an object that is pointed to by a link variable, use a
double dot.

Freeing memory allocations

Once memory has been allocated using the ‘new’ operator, it is not released until
the ‘free’ operator is called on a link to that memory location.

This is the case even when the data variable is unreachable, such as with a local
variable after a function has ended.

An example of freeing memory:
function £f1 ()
{
var link to double x1;
x1 = new double;
xl. = 29;
function2 (x1);

free x1;

Links to static structures

In Calc a link can only point to a dynamically-created item, created using ‘new’.

A link cannot point to a standard Calc variable using an ‘address of operator, as
could be done in other languages such as C.

For example:

var int i;
var link to int k;

74

k = &i; // NOT part of the calc language.

-
I

new int; // valid Calc code

Links to static objects were considered, and in fact were briefly implemented, but

were removed from the language in order to make it simpler. These constructs

can also lead to a range of memory corruptions that are difficult or impossible to

prevent.

19. Lists
Calc has a ‘list’ data type.

List variables contain a set of items. Each item in the list has two elements: A
‘key’, which identifies the item in the list, and a link, which can link to any data

type.

@

Each item inserted into a list must have a unique key. Also, an empty string
cannot be used as a key.

Keys of items in lists can be strings, integers, or binary type variables.

Creating a list

A list variable is declared as follows:

var list x;

x.create(0);

The parameter to ‘create’ is for future expansion and is not currently used.

75

Adding items to a list

Items are added to a list using the ‘insert_s()’, ‘insert_i()’ or ‘insert_b() member
functions. For example:

var list x;
var link to double x1
x.create(0);
x1 = new double;
x1. = 45;
// Add an item into the list, with a key of ‘iteml’.

x.insert s("iteml", x1);

Searching for an item in a list

To seach a list and determine whether an item is in it, use the ‘key_found_s()’,
‘key_found_i()' or ‘key_found_b()’ member functions.

var list x;

var link to double x1
x.create(0);

x1 = new double;

x1. = 45;

x.insert s("item2", x1);

print (x.key found s("item2")); // prints ‘true’

76

print (x.key found s("item3")); // prints ‘false’

To search a list and retrieve the object that the list item links to, use the
‘search_s(), ‘search_i() or ‘search_b() member functions.

For example:
var list x;
var link to double x1, x2

var bool item found;

x.create(0);

x1l = new double;
x1l. = 45;
x.insert s("iteml", x1);

// sets ‘item found’ to ‘true’ and retrieves a link
// to the variable created at xI1.

x2 = x.search s("iteml", ref item found);

print (x2.);

Scanning through a list

Lists are maintained in Calc in a sorted order.

There are three ways in Calc to scan through a list.

The example code below shows all three methods.

var list x;
var list item litem;

77

var link to string lstr;

var string key;

x.create(0);

// insert three

lstr = new string;
lstr. = "a";
x.insert s("1", lstr
lstr = new string;
lstr. = "b";
x.insert s("2", lstr
lstr = new string;
lstr. = "c";
x.insert s("3", lstr

items into the

// scan through the keys

scan_ list keys(key in x)

{
print (key);

// scan through the data items

scan_list data(lstr i

{
print (lstr.);

// scan through the list

scan_list (litem in x

{

n x)

)

list

objects

lstr = litem.get data ptr();
key = litem.get key s{();

print (key & “:” & lstr.);

The ‘scan_list keys’ statement

The ;scan_list_keys’ operator will repeat a loop of code for each key in the list.

The ’'scan_list_data’ statement

The ;scan_list_keys’ operator will repeat a loop of code for each data item that
has been inserted into the list.

The ’scan_list’ statement

The ;scan_list_keys’ operator will repeat a loop of code, setting the first variable
to ‘list_item’ objects.

Using the list_item object it is possible to retrieve the key, data item link, and
statistics such as the number of duplicate keys for that item in the list.

All three scan operators may take an additional parameter (meaning ‘ascending’)
to scan in reverse order.

For example:

scan_list keys(sl in x, false)

Lists where a key is not required

79

In some cases just a list of data items is required, the data items do not have a
key.

In these cases the ‘unique_items_in_list()’ function may be used to indicate an
integer key for each insert operation.

For example:

var list x;
var link to string lstr;

x.create(0);

lstr = new string;
lstr. = "a"
x.insert i(x.unique items in list(), lstr);

lstr = new string;
lstr. = "b";
x.insert i(x.unique items in list(), lstr);

lstr = new string;

lstr. = "c"
x.insert i(x.unique items in list(), lstr);

This code will have the effect of assigning an integer key to each item in the list
in the sequence 0, 1, 2, 3 etc.

Integer keys

Keys are stored in Calc lists in a bitwise pattern. This means that for a sorted
output of integer keys, the positive values will be returned in sorted order,
followed by the negative values in sorted order.

If your integer keys contain negative and positive values, add a ‘bias’ to all

values before inserting and scanning.

80

For example:

var list x;
var list item x item;
X.create(0);
.insert i(10 + 1000, NULL LINK);
.insert i(-20 + 1000, NULL LINK);
.insert i(30 + 1000, NULL LINK);
.insert i(40 + 1000, NULL LINK);
(-10 + 1000, NULL LINK);

b

.insert i

scan_list (x item in x)
{
print(x item.get key i() - 1000);

This code would print -20, -10, 10, 30, 40.

Key-only lists

In some cases it is only necessary to store a list of keys. In these cases, pass
NULL_LINK as the second parameter to ‘insert_s()’, ‘insert_i()’ or ‘insert_b()'.

Duplicate keys

When an insert operation is performed and the key is already in the list, the
following procedure is performed:

1. The value of unique_items_in_list() remains unchanged.

2. The value of total_items_in_list() increases by one.

3. Thelink in the list item is replaced by the link that is passed to the new insert
function call.

4. A scan of the list returns one item only for the duplicated item.

81

Freeing lists

Once a list variable has been created, the memory allocated to the list is not
freed until the program code explicitly frees it, even if the list variable is a local
variable.

An example of freeing a list is shown below:

var list x;

var list item x item;

var link to double x1;

x.create(0);

// insert some ‘double’ wvalues into a list

x1 = new double;
x1l. = 35;
x.insert s("iteml", x1);

x1 = new double;

x1. = 45;

x.insert s("item2", x1);
// free the double variables that have been inserted
// into the list

scan_list (x _item in x)

{

x1l = x item.get data ptr();

free x1;

// free all the list item data

x.free list();

Advanced usage

As an example of an advanced usage of lists, the code below has a list that

contains another list as its data.

var list x;
var list item x item, x item2;
var link to list x1;
Xx.create(0);
x1l = new list;
x1l..create(0);
x1l..insert s("iteml", NULL LINK);
x.insert s("iteml", x1);
scan_list (x_item in x)
{
x1l = x item.get data ptr();
scan_list (x item2 in x1.)

{
print (x item2.get key s()

83

Example

The following example of list variables should print the number 44 twice:
var list 11;

var link to int x1;

x1 = new int;

11.create(0);

x1. = 44;

ll.insert s("abcd", x1);

// retrieve x1 as a return variable
x1 = ll.search s("abcd", true);

print(x1.);

// print the value of the return value directly

print (1ll.search s("abcd", true) {link to int} .);

20. Conditional compilation

Calc supports conditional compilation. This allows different sections of code to
be compiled/run depending on specified conditions.

For example

#if interpreter
// code here

84

// code here
// code here
#end

In the example above, the Calc code within the #if and #end keywords will only

be compiled or run if the ‘interpreter’ runtime environment has been selected.

At present the pre-defined conditions are:

compiler true if the code is being compiled
interpreter true if the code is being run by the interpreter
embedded true if the code is running in an embedded

environment

Additional constants can be defined on the compiler/interpreter command line
using the “:set_true=name="and ‘set_false=name’ options.

Boolean expressions are supported, such as ‘#if x1 and not x2'.
A variable can be set within the code using the ‘#set’ operator.
For example:

#set x1 true
#set x2 false

#if x1
/7.
/7.
#end

The #if and #end keywords can appear anywhere in the token stream they do
not have to be at the start of a line.

An #else is supported. For example:
#if x1

/7.
/7.

85

#else
//
//
#end

Also, #if statements may appear inside other #if statements (known as nesting).

For example:

#if x1
/7.
/7.
#if x2
/7.
/7.
#end
/7.
/7.
#else
/7.
/7.
#end

#include and #set may be within #if, for example

#if varl
#include “x.calch”;
#end

#if varl
#set var2 true
#end

21. Performance issues

86

Calc is a high performance language. The Wattleglen compiler produces a C
program as its output, which can be compiled to a program that is comparable to
Assembly/Machine code in speed.

However there are some constructs in the Calc language which can cause
performance issues.

Fast operations

Operations with simple variables, for example:

y:x*z;

Accessing an array element (fixed arrays or resizable arrays);

y = x[i];

Accessing a ‘object’ member:

y = x.fieldl;

Function calls:

x2 = functionl (x1);

Passing variables to functions:

function int f1(int x);

Inserting an item into a list.

ll.insert s(“iteml”, x2);

Searching for an item in a list.

87

x2 = ll.search s(“iteml”, ref found);

Slow operations

The following operations are supported by the language but can slow program
execution:

Assignment of large arrays and large “object” types:

y = X; /I where ‘y’ and ‘X’ are large arrays or large “objects”.

f1(str); /l where ‘str’ is a large string, for example an entire file
use f1(ref str);

“)

Returning values from functions that are large arrays or large “objects”:

function array [10000] of string f1(int x)

Other issues

Operations with integer values are faster than operations with 'string* values. For
this reason, codes used within programs should be integer values not string
values where possible.

Operations with arrays are generally faster than operations with ‘list’ data

variables.

Compiler switches

For maximum performance in cases where stability is not important, such as
solving complex problems in a laboratory setting, set the following compiler
options:

88

‘no_runtime_checks

‘no_array_bounds_checks

:don’t_initialise_variables

Don’t check for divide by zero, etc.

Don’t check whether array indexes are within
bounds.

Don't initialise integer, floating-point, decimal,
or bool variables, or arrays of these types.

89

22. Data type and declaration summary

The simple data types are:

int

short_int
medium_int
byte
decimal
float

double
long_double
string

bool

date

time
datetime
binary

Integer numbers
Integer numbers
Integer numbers
Integer numbers
Fixed-point numbers with two decimal places
Floating-point numbers
Floating-point numbers
Floating-point numbers
Items of text

‘true’ or ‘false’

Dates

Times

A date and time

A block of binary data

The user-defined types are:

type type_name <data_type> ;

The aggregate data types are:

<simple-datatype>

<user-defined type name>

array [index_sizel, index_size2,...] of <datatype>

resizable array of <datatype>

object { variablelist } ;

link to <datatype>

90

Examples:

var string sl;

var int i, 3j, k;

var link to string s2;

var resizable array of double x1;

var array [100] of resizable array of string x2;

var resizable array of array [100] of int x3;

23. Linked data items
Arrays and object types in Calc are stored contiguously in memory. This means
that if an array or object type has 10 items, the 10 items are stored in a

continuous set of memory locations.

Linked structures operate differently. A linked data structure is composed of
objects, that are linked together with links.

The ‘scan_list’ statement can be used to scan through linked data structures, see
the examples below.

scan_list (item type variable in object type variable)

{

91

23.1. Linked lists

‘Linked lists’ are suitable for storing lists of items. They only occupy the space
required and do not need to be resized.

Linked lists can be used to accumulate a set of items and then scan through
them for processing.

The Linked List data type is a very simple structure that has a number of
advantages.

1. The memory usage is very low and is only that required for the items in
the list.

2. The size of the list grows with usage and does not have to be specified in
advance.

3. The insert and first/last/next/previous operations are very fast.

This structure has a ‘search’ function, however the search function is slow for
lists of greater than 20 or 30 members, as it needs to search through every item
in the list up to the correct one.

Due to this the ‘list’ data type should be used for large lists where searching is
required.

function void llnew(1llist 11, int options);

Create a new linked list with initially no items. ‘Options’ is not currently used.

function link to 1llist item llinsert(llist 11, string key,
link to general data ptr);

Insert a new item into the list. The ‘key’ is optional and can be set to “ if
searching for individual items it not required. The ‘data_ptr’ is a link to data to be
stored in the list with this item. It can be set to NULL_LINK if only a list of keys is
required.

92

function link to general llsearch(llist 11, string key);

Search the list for an individual item and return the link that was passed to the
insert function call.

The ‘llist_first_item()’ and llist_next_item()’ functions set the ‘llist_current’ value to
the first/next item in a list. If ‘ascending’ is ‘true’, the items are returned in the
order that they were inserted into the list. Otherwise the items are returned in
reverse order to their insertion order.

Example

This example code creates a linked list, inserts the numbers 30 to 40 into the list,
and then prints it.

type t 1 object
{
int x;

}s

function int main(int argc, resizable array of
string argv)

{

var llist 11;
var llist current 1 item;

var link to t 1 dat;

var int i;
// create a list

llnew(11, O);

// create items and add them to the list

93

for (i=40 to 30 step -1)
{
dat = new t 1;
dat..x = i;

11,

mn
4

dat);

llinsert (

// scan through the list

//*******************************

// method 1: the 'scan' statement

//*******************************

scan_list (1 item in 11)

{

dat = 1 item.ll curr..data ptr;

print (dat..x);

// or

// create new item

// .data ptr is the

// item passed to the

// llinsert ()

print(1 item.ll curr..data ptr {link to t 1}

//*******************************

// method 2: direct function calls

//*******************************

var bool continue loop;

continue loop = llist first item(11,

1 item, true);

. X

94

while (continue loop)

{
dat = 1 item.ll curr..data ptr;

print (dat..x);

// or
print(1 item.ll curr..data ptr { link to t 1} ..x);
continue loop = llist next item(1 item, true);
}
Alternatively:

print(1 item.data ptr {link to t 1} .x);

23.2. Bitstream trees

Bitstream trees are a new data structure that was developed as part of the Calc
project. They can store items that are identified by a binary key.

A tree structure is useful when a large number of items need to be stored, with
fast lookup of individual items, and also the ability to process the items in the tree
in a sorted order.

Each item inserted into a Bitstream tree must have a unique key.

The maximum depth of an item in a Bitstream key is equal to the number of bits
in the key, and in most cases is much less.

The ‘list’ data type in Calc is implemented as a Bitstream tree.

95

Algorithm

The basic concept of a bitstream tree starts with a key identifying the data item,
such as an ASCII text string, Unicode text string, or an integer value.

Start from the first bit in the key, and take the left path down the tree if the bitis O
and the right path if the bit is 1. Process the next bit, taking the left path for 0 and
right path for 1 and so on. Continue until the full key has been processed and
add the data item at that point.

In this basic structure every data item would be stored at a depth in the tree that
is equal to the number of bits in its key.

The full implementation stores multiple bits at each level, so that the actual depth
in the tree for each data item is generally much less that the depth associated
with the basic model.

A bitstream tree is naturally balanced and does not require rebalancing after an
insert operation.

24. Function examples
24.1. Sorting

The Calc standard library includes functions for sorting arrays of doubles, strings,
and a general sort function.

These functions do not alter the input array, they work by creating a set of
integer keys that are indexes into the input array.

For example:
// create an array of doubles from the input
// data
for (i = 0 to num items - 1)
amounts[i] = items today[i].amount;

// generate the ‘keys’ array values

96

msort (amounts, keys, num items today, false);

// can now refer to the input data in sorted order

for (i = 0 to num items -1)
{
J = keysl[i];
next input value = items todayl[j].value;

If the sort comparison is more complex that a string or number comparison, for
example if it requires comparing several fields in a structure, use the ‘gsort()’
Function.

This function can also be used for multi-key sorts.
For example, some data might need to be sorted by data value ‘key1’. However

where there are several items with the same value for ‘key1’, the data might
need to be further sorted by ‘key2’, see below.

Keyl Key2
AAA 50
AAA 55
AAA 60
BBB 20
BBB 25
BBB 30
CCC 18
CCcC 19
CCC 20

The comparison function must be declared using the ‘function_table’ operator.
It must have one argument, which is a link and have a return type of ‘void’.
The comparison variable should be set to 1 if the first operand is greater than the

second operand, -1 if the second operand is greater than the first operand and 0
if they are equal.

97

For example:

type x50 object
{

int data;
b

function void fx2(link to gsort item x3)

{

var link to x50 x1, x2;

x1l = x3..iteml;
x2 = x3..item2;

if (x1..data > x2..data)

x3..compare stat = 1;
else
if (x1..data < x2..data)
x3..compare stat = -1;
else

Il
o
~

x3..compare stat

function int main(int argc, resizable array of string argv)

{
var resizable array of link to x50 x1;
var resizable array of int keys;

setsize x1 <100>;
setsize keys <100>;

x1[0] = new x50;
x1[1] = new x50;
x1[2] = new x50;
x1[3] = new x50;
x1[0]..data = 100;
x1[1]..data = 50;
x1[2]..data = 20;
x1[3]..data = 200;

function table fx2;

gsort (x1, keys, 4,

print
print
print

print

x1
x1
x1
x1

[keys[0]
[keys[1]
[keys [2]
[[3]

1.

1.

]
keys]

24.2. Vectors

"fx2", true);

.data
.data
.data
.data

~.

~.

To perform operations with sets of numbers such as generating statistical
analysis, use the “vector” data type.

For example:

var vector x, y;
var double correl;

vec_set size(x, 10

vec_set size(y, 10

vec set item(x, O,

vec set item(x, 1,

vec_set item(x, 2,

vec_set item(y, O,

vec set item(y, 1,

vec set item(y, 2,

correl =

print(correl);

st correlation(x, y)7

// the vector size must be set
// before adding items

// calculate the
// correlation between
// the data sets

99

25. Databases

The standard library includes functions for accessing SQL databases.
This includes retrieving data and updating data in the database.
A database generally consists of a large number of ‘records’.

Each record contains information such as customer details, product details, or an
address history detail.

A ‘table’ is a collection of all records of the same type.

A ‘column’ is an individual field with a record such as customer ID, customer
surname etc.

Information from one table to another is related using ‘keys’, which are normal
data values that occur in more than one table.

A common example of a key could be ‘Customer_ID’.
In this example, the Customer_ID value would appear in the primary customer
table (“primary key”). It could also appear in other tables that have information

that relates to a customer (“foreign key”).

Almost all commercial databases at the current time use the relational data
model, and can be accessed using the SQL language.

A separate book by the author, ‘SQL Essentials’, is a comprehensive guide to
the SQL language.

Below is an example of an SQL query:

SELECT id, first name
FROM customer details

100

WHERE date joined = ‘2022-01-01';

The below code example is a function for printing account codes and names
from an accounting database.

function void print accounts ()
{
var db_connection cxn;
var string query;
var db_query result resultl;
var db_row data;
var int num_rows;
var string account code, account name;

cxn = db login("accounts", "USERNAME",

"PASSWORD") ;
query = "SELECT * FROM accounts
WHERE active = 'yes' ORDER BY
display name";
resultl = db run query(query, cxn);
num rows = db query num rows(resultl, cxn);

repeat num rows times

{
data = db _get row(resultl, cxn);

account code db get field string("code", data

) 7

account name = db get field string(
"display name", data);

print (account code & ":" & account name);

db free result (resultl, cxn);

101

26. Calling Calc code from a text string
The Calc standard libraries contain functions for calling the interpreter.

This allows a program to assemble a text string that contains valid Calc code,
and execute it.

These functions can be called from compiled code, or code that is run using the
interpreter.

The text string must contain a valid Calc program, including ‘include’ files and a
main() function.

There are functions available to read and set global variables within this
program, to put data into the text program and retrieve results.

27. A 2-page introduction to web pages

Calc can be used to produce online systems from a single web page, to
complete systems.

Calc runs on the web server, not within the client browser.
To generate a web page, use the “output()” function.

Below is a brief introduction to HTML, CSS and AJAX items.

 Break, move to the start of the next line.
 Start bold text.

 End bold text.

<i> Start italic text.

</i> End italic text.

<u> Start underline text.

</u> End underline text.

Below is a simple table. <tr> stands for table-row and <td> stands for table-data
(one cell in a table).
102

<table>

<tr><td class='AAA’ style='BBB’>XXXX</td><XXXX</td></tr>
<Er><td>XXXX</td><XXXX</td></tr>
<Er><td>XXXX</td><XXXX</td></tr>

</table>

Below defines a style, which is referred to with the ‘class=" option.

Values can be directly specified with the ‘style="...” option.
<style>
.textl { color: #000000; font-family: verdana;

font-weight: bold; font-size: 12pt }

</style>

Below prints some text in the specified style.

Sample text

Below prints a link, which is some text that when clicked on causes the screen to
jump to a new web page.

click on this
text

Data entry forms use similar simple commands, starting with the <form> tag.

To show an image on a web page use:

The below shows a method of updating a web page continuously, such as
printing a clock, stock price or temperature on the screen that continually
updates.

103

xxx
<script>

function listen text()

{

var xmlHttp2;
var s;

xmlHttp2 = new XMLHttpRequest () ;
xmlHttp2.onreadystatechange =
function ()

{
if (xmlHttp2.readyState==4)

{
if (xmlHttp2.responseText != "")
{

s = xmlHttp2.responseText;

document.getElementById(‘idl’
) .innerHTML = s;

var url = ‘/scripts/return data item.php’;
xmlHttp2.open (*POST’, url, true);

xmlHttp2.send(null);

window.setInterval(\'listen text()\', 1000);
</script>
The above commands can be used to generate simple web formatting for pages

that are for internal use.
104

28. Reference information

Lexical structure

Calc code is free-format. Tokens are separated by whitespace, or one token
ends where another begins.

All names and language keywords within Calc are case sensitive.
Names are used for variables, functions, types and constants.

A name within Calc cannot start with “_calcsys_” as this is reserved for compiler
use.

To accommodate foreign languages, a name in Calc can be composed of any
characters in the Unicode character set, except for the operator characters such

]

as “=", whitespace characters, and cannot start with a digit.

Text for tokens is defined in language files and can contain apostrophes and
underscores, but not spaces.

String constants can contain embedded newline characters. For example:
var string sl;
sl ="

Line 1 text

Line 2 text
Line 3 text

w.,
r

This is a valid string expression. The equivalent instruction using escape
characters would be:

var string sl;

105

sl = "\n\tLine 1 text\n\tlLine 2 text\n\tLine 3 text\n\t“;

Name conflicts

The following are the namespace rules:

a)

b)

d)

e)

f)

9)

h)

The global namespace is composed of global variable names, function
names, constant names and type names.

A global variable cannot be declared with a name that is already in use
within the global namespace, or is a reserved word.

A function name cannot be declared with a name that is already in use
within the global namespace, or is a reserved word.

A constant name cannot be declared with a name that is already in use
within the global namespace, or is a reserved word.

A type name cannot be declared with a name that is already in use within
the global namespace, or is a reserved word.

A type member cannot be declared with a name that is already in use
within that type, is a type name, constant name, function name, or is a
reserved word.

A function argument cannot be declared with a name that is already in
use for a function argument of the same function, for a constant name, a
function name, a type name or is a reserved word.

A local variable cannot be declared with a name that is already in use for
a function argument of that function, a local variable with the same name
in the same function, for a constant name, a function name, a type name
or is a reserved word.

A function argument or local variable can be declared with a name that is
the same as a global variable name.

Exceptions: the reserved word ‘main’ can be used as a module name and a
function name.

106

Function declarations and definitions

Function parameter descriptions can occur in two circumstances: declarations,
and definitions.

A function declaration has the function parameters followed by a semicolon. This
is optional and may be used to declare the function before it is called.

Functions may be declared multiple times as long as the declarations are the
same.

A function definition contain the function parameters, followed by the body of the
function.

A function may only have one function body.

If a declaration is present it must match the definition.

Shortcut evaluation

Shortcut evaluation occurs when unnecessary elements of a boolean expression
are not evaluated.

For example:
if (a or b or c{())

In this case if a or b are true, the 'if' condition is true and there is no need to call
function c().

To ensure consistent operation of programs, Calc compilers are required to
implement shortcut boolean expression evaluation.

This includes shortcut evaluation for boolean expressions, 'switch' case
expressions and the 'in' operator.

107

Include files
The keyword ‘include’ can be used to read input from another source code file.

The name after the ‘include’ must be a text string. It can be an internet address
starting with ‘https’, a full path on the server starting with ‘/, or a filename.

If the include name is a filename only, the paths searched for the file must be

specified on the compiler command line starting with “:I', for example ‘:Ipath-to-
include-file’.

Loop variables

To avoid bugs and confusion loop variables such as 'for (i=0 to 100)' have some
restrictions. A loop variable cannot be reused as a loop variable within an inner
loop of the main loop, also the loop variable cannot have a value assigned to it
inside the loop using an assignment '=' operator.

Function tables

Function tables allow a function to be called within a Calc program using a text
string as the function name, or a function number.

This may be necessary when general library functions need to call a function
from the user program.

Three steps are required to use this functionality.

1. Declare the functions that are available to be called by name in the main
program, as below:

function table f1, f2, £3;

2. Write the functions to be called. These must be void functions taking a single
argument, a link type.

108

e.g.
function void f2(link to x x1)

{

print (xl.data value);

3. Call the functions as required (by name).
call function(link variable, function name to call);

e.g. call function(x, "f2");

This method of calling functions is slower than a direct function call “x =
£1 () ; ” so should only be used when necessary.

4. Call the functions as required (by number).

call function by number(link variable,
function number to call);

e.g. call function by number(x, 1);
The call function by number functionality is provided to allow the implementation
of ‘jump tables’.

The function numbers start at 0 upwards and are in the same order that the
functions appear in the ‘function_table’ statement.

If a program has multiple ‘function_table’ statements, the functions are numbered
from O upwards in the order that the compiler reads the statements.

A jump table is used to directly call a function from a long list of available

functions, without having to search through the list using if-else or switch
statements.

109

This method is comparatively fast and can be used as an alternative to a
‘switch() / case’ statement that has a very large number of ‘case’ alternatives.

As a link variable points to an object type which can contain multiple fields, these
methods can pass multiple values into the function being called, and the function
being called can return multiple values by setting variables within the object.

Collating sequences

String collating refers to the sort order of strings in Calc for list keys, the “<”, “>”,
“<=" and “>=" operators, and the ssort() function.

English language characters are sorted as per the English alphabet, with ‘A’
coming before ‘@’ and ‘aa’ coming before ‘aaa’.

Non-English characters are sorted as per their numeric value in UTF-8 format in

the Unicode character set.

List of reserved words

The following words are reserved and cannot be used for variable names,
function names, type names or constant names.

and

array

binary

byte

bool
call_function
call_function_by name
case

const

date
datetime
decimal
default
double

else

FALSE

float

for

free

function
function_table
general

if

in

include

int

link
link_module
long_double
main

mod
module_name
module_type
new

not

of

object

or

repeat
resizable
scan_list
scan_db
secondary
setsize
short_int

string
struct
switch
times
to

true
TRUE
type
var
variable
void
while
Xor

110

false medium_int step

The keywords ‘false’ and ‘FALSE’, and ‘true’ and ‘TRUE’ have the same
meaning.

This is the list of reserved words for Calc programs written in English.

For Calc programs written in foreign languages, refer to the equivalent keywords
listed in the

XXXX.calclanguage

file.

Expression types

When numeric data types are mixed in an expression, for example x +y, the
result type of the expression is specified in the table below:

Note that if the operator is a division and both operands are integer types, then

they are converted to long_doubles and the result of the expression is of type
long_double.

Left Operand: int

Right Operand Result Type
int int

short int int

medium int int

decimal decimal
byte int

float float
double double

111

long double

long double

Left Operand: short int

Right Operand

int

short int
medium int
decimal
byte

float
double

long double

Result Type

int

short int
medium int
decimal
short int
float
double

long double

Left Operand: medium int

Right Operand

int

short int
medium int
decimal
byte

float
double

long double

Result Type

int

medium int
medium int
decimal
medium int
float
double

long double

Left Operand: byte

Right Operand

int
short int

Result Type

int
short int

112

medium int
decimal
byte

float
double

long double

Left Operand:
Right Operand

int

short int
medium int
decimal
byte

float
double

long double

Left Operand:
Right Operand

int

short int
medium int
decimal
byte

float
double

long double

medium int
decimal
byte

float
double

long double

decimal
Result Type

decimal
decimal
decimal
decimal
decimal
double
double
long double

float

Result Type

double
float
double
double
float
float
double
long double

113

Left Operand: double

Right Operand Result Type
int double
short int double
medium int double
decimal double
byte double
float double
double double
long double long double

Left Operand: long double

Right Operand Result Type
int long double
short int long double
medium int long double
decimal long double
byte long double
float long double
double long double
long double long double

Standard library

In Calc, the standard library is considered part of the language. For example,
Calc compilers can compile the bit functions bit_and(), bit_or() etc directly into
system instructions to improve performance.

Dynamic memory allocation and freeing

114

Data items of any type, including arrays and objects, can be created using the
‘new’ keyword and deallocated using the ‘free’ keyword.

The following code will generate a run-time error:

o Attempting to free a data block twice.
e Attempting to access a data block that has been freed.
e Attempting to access or free a link variable that is set to NULL_LINK.

Since freeing a variable also sets it to NULL_LINK, the only way that system
code might attempt to free a block twice (unintentionally) is by using code similar
to the below:

var link to int x1, x2;

x1l = new int;

x2 = x1;

free x1;

free x2;

Link types

The compiler and interpreter check link types at compile time which should
detect most program errors with incorrect types.

However there is also a check at run time to detect errors of the following types:
e Assigning a link value from a ‘link to general’ to a link of the incorrect
type.

o Data types in different files with the same name but different members.

The run-time link type check does not use data type names so as to enable this
check, a map of the data types within a definition is used.

The link type check applies to:
115

Dereferencing: x1.

Assignment operation: x1 = x2;

The link type operator: x1 {link to int}
Parameters passed to functions: f1(x1)

29. The Wattleglen Calc compiler

The Wattleglen Calc Compiler is the initial Calc compiler, also developed by the
author.

The Wattleglen compiler is written in the Calc language itself.

The compiler produces a C program as its output which can be compiled and run
on any platform that has a C compiler.

Information read from text files and web page forms is assumed to be in ASCII or
UTF-8 format.

The compiler stores strings in a custom UTF-32 format. This format is a fixed-
width format where every character occupies 4 bytes. The character
representation is the UTF-8 value, padded with trailing zero bytes to make the
four bytes.

This approach prioritises execution speed at the expense of higher memory
usage.

A fixed-width encoding is specified to enable direct lookup of substrings, which is
drastically faster than looking up substrings in variable length encodings such as

UTF-8 and UTF-16.

Strings and ‘binary’ type values have a leading 8 byte value specifying the
number of bytes in the string (excluding the leading 8 byte value).

Dates, times and datetimes are stored in ISO text format, such as

2022-01-01 08:30:00
116

All dates are stored in YYYY-MM-DD format, all times in HH:mm:SS and all
datetimes in YYYY-MM-DD HH:mm:SS.

This approach is generally faster than converting date text to a numerical
representation and back again.

If a numerical representation is required the function ddate_to_julian(date d1)
can convert a date to the number of days since January 1 4713 BC.

Objects and arrays are a sequence of simple variables.

Resizable arrays have a header structure and a pointer to a sequence of
variables.

Links point to a very small header structure that is retained in memory after the
dynamic object is freed to enable the detection of double-frees etc.

Calc compilers should have array bounds checking (which can be switched off),
and optional compiler initialisation of variables.

Memory management

Global variables, the 'new' operator and 'setsize' can access all available
memory, up to the size of an 8 byte integer value (on 64 bit systems).

Local variables (variables declared within functions) access an area of memory
known as the 'stack’.

The stack has a limited size, although this can be configured when the program
is compiled.

The stack is not intended for storing large arrays.

Depending on the system that the program is operating on, you may not get a
warning about potential stack overflow when the program is generated, the
program may crash at runtime.

Large arrays should be declared as global variables, or declare the array as a
resizable array and use setsize.

117

The Wattleglen compiler produces code that uses the following data sizes on 64
bit systems:

byte 1 byte

short_int 2 bytes

medium_int 4 bytes

int 8 bytes

decimal 8 bytes

float 4 bytes

double 8 bytes

long_double 12 or 16 bytes

bool 1 byte

string 152 bytes + 4 bytes per character for large strings
date 64 bytes

time 56 bytes

datetime 100 bytes

binary 24 bytes + 1 byte per byte in the item

Arrays and objects are stored contiguously in memory (i.e. in a continuous
block).

For example:

type t 1 object
{

int x;

double x2;

array [100] of int y;
}i

Variables of this type would use 8 + 8 + 100 * 8 = 816 bytes of memory.

Execution speed and memory usage

The Wattleglen compiler was developed during a time when computer memory
was plentiful and cheap.

118

For this reason most design decisions favour execution speed over memory
usage.

Distribution

Calc does not require a runtime environment. The Wattleglen Calc compiler
produces a C program as its output, which can be compiled along with the library

routines to produce a single executable file for distribution.

The compiler itself can also run on any platform that has a C compiler.

C language interface

A Calc program can consist of multiple source files. Code within one source file
can call functions from another source file, and access global variables from
another source file, as long as the relevant declarations occur at the top of the
source file and the source files are linked into an executable file with the system
linker.

Calc code can call ‘C’ functions. Also, a ‘C’ program can call Calc code.

Refer to the documentation supplied with the system on how to do this.

Foreign languages

The Wattleglen compiler supports Calc source code written in foreign languages
e.g. French.

The :0source_code_language_file=xxxxxx command line option can be used to
specific the language of the source code file.

Language keywords and variable names should be in that language.
At present error messages are in English only.

To accommodate foreign language programs, a name in Calc is defined as any
sequence of characters from the Unicode character set that are not operator

119

characters (e.g. ‘=), whitespace characters (e.g. space, tab) and is not a
language keyword.

A name can contain digits, O to 9 but cannot start with a digit.

Usage

calc compile.exe calc-source-file.calc [options]

Calc-generated web page:

www.domain-name.com/run.php?file=calc-executable.exe

30. The Wattleglen Calc interpreter

The Wattleglen compiler set also includes an interpreter. Interpreters are slower
than compiled code, however they have a number of advantages.

When debugging large systems, interpreted code can recommence immediately,
after a program change, without the need to wait for a compile-link step which
can take from seconds to minutes or more depending on the size of the system.
Also the interpreter can be embedded in applications, to build in a macro

programming language into an application.

About the interpreter

The Wattleglen interpreter is written in C++.

Technically it produces icode instructions, which are then run by a run-time loop.

120

http://www.domain-name.com/run.php?file=calc-executable.exe

String handling is the same as the compiler. Strings are stored in a 4-byte
format, which enables substrings to be directly located, without having to search
the string as would be required in a UTF-8 or UTF-16 format.

In the interpreter, all simple variables are stored as a ‘var’ structure, which
occupies 16 bytes of memory.

Arrays and objects are sequences of ‘var’ structures.

The same standard library is available in the interpreter and the compiler.

31. Standard library
The standard library of functions included with the system contains the following

functions.

31.1. Input/Output

function file_interface fopen(string filename, int mode, bool
successful_open);

Opens a file for reading or writing. mode is one of:
FILE_MODE_READ

FILE_MODE_WRITE
FILE_MODE_APPEND

function string fgets(file_interface file_descriptor);

Reads a line from a text file up to a newline character, and returns the text as a
string.

function void fputs(string s, file_interface file_descriptor);

121

Writes a string to a file, terminated by a newline character.

function bool feof(file_interface file_descriptor);

Returns true if reading from a file has reached the end of the file.

function void fclose(file_interface file_descriptor);

Close a file handle.

function bool fexists(string filename);

Returns true if a file exists.

function bool fis_a_directory(string pathname);

Returns true if a path exists and is a directory.

function datetime flast_modified_datetime(string filename);

Returns the last modified datetime of a file.

function int ffiles_in_folder(string pathname, resizable array of string
filenames);

122

Generates an array of the filenames in a directory and returns the number of
items found.

function void fdelete(string filename);

Deletes a file.

function int fsize(string filename);

Returns the size of a file.

function int fread(binary b, int number_of_bytes, file_interface
file_descriptor);

Reads binary data from a file into a variable of type ‘binary’. Returns the number
of bytes read.

function void fwrite(binary b, int number_of _bytes, file_interface
file_descriptor);

Writes binary data to a file.

function void fseek(file_interface file_descriptor, int pos);

Move the file read-write position to position 'pos'.

function int fcurrent_position(file_interface file_descriptor);

Returns the current file read-write position.

123

function string ffile_get_contents_text(string filename);

Read an entire text file into a string.

function string ffile_get_contents_binary(string filename, binary b);

Read an entire binary file.

function void mkdir(string dirname, int mode_bits);

Creates a new directory.

function void print(string s);
Prints a string expression. Use & to concatenate strings.

eg.print("x: " & x & "y: " &y);

function void output(string s);

Output a string expression without a newline. Use & to concatenate strings into a
single value.

function string input_string();

Input a line of text from the console.

124

31.2. Strings
function int slength(string s);

Returns the length of a string.

function string sleft(string s, int length);

Returns the leftmost 'length’ characters from the input string. If the ‘length’ value
exceeds the length of the string then the entire string is returned.

function string sright(string s, int length);

Returns the rightmost 'length' characters from the input string. If the ‘length’ value
exceeds the length of the string then the entire string is returned.

function string sright_from_pos(string s, int start_pos);

Returns the rightmost characters from the input string, starting at and including
position 'start_pos'.

Positions start at O.

If ‘start_pos’ exceeds the string length an empty string is returned.

function string smid(string s, int start, int length);
Returns a substring of 'length' characters from string ‘s’ starting a position 'start'.

Positions start at O.

125

If start_pos + length exceeds the string length the rightmost section of the string
is returned starting at start_pos.

If ‘start_pos’ exceeds the string length a run-time error is generated.

function string schar(string s, int pos);
Returns a one-character string from position pos (starting at 0) from string s. This

function is slightly faster than smid() so it should be used in preference to smid()
when a single-character string is required.

function string stoupper(string s);
Returns an uppercase version of ‘s’. This function only operates on the

characters ‘a’ to ‘Z, all other characters including foreign language text is left
unchanged.

function string stolower(string s);

Returns a lowercase version of ‘s’. This function only operates on the characters
‘A’ to ‘Z, all other characters including foreign language text is left unchanged.

function bool scaseieq(string s1, string s2);

Returns true if two strings are the same (case insensitive). Regular strings can
be compared with “if (s1 == s2)".

function int ssearch(string s, string search_string);

126

Returns the position of the first 'search_string' within 's', or -1 if not found.
Positions start at 0 meaning the first character.

function int srsearch(string s, string search_string);

Returns the position of the first 'search_string' within 's', searching from the end
of the string backwards, or -1 if not found. Positions start at 0 meaning the first
character.

function string strim(string s);

Trims whitespace characters (space, tab, \r, \n) from the start and end of a string.

function string sreplace(string s, string search_string, string
replacement_string);

Returns a string from string ‘s’ with all occurrences of 'search_string' replaced
with 'replacement_string'.

function int sexplode(string s, string delimiter, resizable array of string
receiving_array);

Breaks a string into sections using delimiter character 'delimiter'. Returns the
number of items that the string was divided into.

The delimiter is generally a one-character string such as “~”
be a multi-character string.

etc however it may

Returns the number of items that the string was divided into.

function int sexplode_whitespace(string s, resizable array of string
receiving_array);

127

Breaks a string into sections separated by one or more whitespace characters
(space, tab, newline, carriage return).

Returns the number of items that the string was divided into.

function int sexplode_csv(string s, string delimiter, resizable array of
string receiving_array);

Breaks a string into sections separated by a delimiter, usually a comma or a tab.
This function recognises quoted strings as a field value, for example:

aaa, "bbb, ccc”,ddd

result =
Field 1: aaa
Field 2: bbb, ccc
Field 3: ddd

The quoted text may contain delimiter characters but should not contain a double
quote.

Spaces are treated as ordinary characters, as part of a field value.

Returns the number of items that the string was divided into.

function int schar_to_int(string s);

Converts the first character in string 's' to a 4-byte UTF8 value (compatible with
ASCII).

function string sint_to_char(int x);

128

Converts an integer ASCII or 4-byte UTF8 value into a one-character string.

function string text_is_valid_number(string text, int options, bool
is_numeric);

Sets 'is_numeric' to true if 'text' represents a valid numerical string. Returns a
cleaned version of the number, removing leading and trailing spaces and
replacing ‘. xxx’ with ‘0. xxx’ and ‘-.xxx’ with ‘-0.XxX’.

Values for ‘options’ are 0 or any combination of:

CHECK NUMERIC DISALLOW NEGATIVES
CHECK NUMERIC DISALLOW DECIMALS
CHECK NUMERIC ALLOW SCIENTIFIC NOTATION

Examples of valid numbers:

9.9E9
-9.9E9
.9E9
-.9E9

9.9E-9
-9.9E-9
.9E-9
-.9E-9

This list contains all valid number formats recognised by this function, where ‘9’
is a string of one or more digits.

129

function string iconvert_from_html(string text)

Converts a string containing HTML characters that have been encoded with
iconvert_to_html() back to regular characters (e.g. ' is an apostrophe)

31.3. Mathematics

function double mrand();

Returns a random number between 0.0 and 1.0.

function void mseed_rand(int seed);
By default the random number generator will produce a different set of numbers
each time a program is run. To produce a repeatable set of numbers, for

example for debugging purposes, call mseed_rand(1) at the start of the
program before calling mrand();

function int mtrunc(double x);

Truncates the decimal part of a number.

function double msqrt(double x);

Returns the square root of x.

function double mfabs(double x);

Returns the absolute value of double value ‘X’.

130

function double mfmin(double x1, double x2);

Returns the minimum of two double values.

function double mfmax(double x1, double x2);

Returns the maximum of two double values.

function int miabs(int x);

Returns the absolute value of integer value ‘X’

function int mimin(int x1, int x2);

Returns the minimum of two integer values.

function int mimax(int x1, int x2);

Returns the maximum of two integer values.

function double mlog(double x);

Returns the logarithm of X’ using base e.

function double mlog10(double x);

131

Returns the logarithm of ‘X’ using base 10.

function double mexp(double x);

Returns the value of e raised to the power of x .

function double mround(double x, int decimal_places);

Rounds a number to 'x' decimal places.

function string mformat(double x, int format, int decimal_places);
Formats a double number into a string.

Multiple format specifiers can be combined with ‘+’ or bit_or().

Formats:

/I fixed number of decimal places
const int NUM_FMT_FIXED = 0bil;

/I floating decimal point, compatible with commas, trailing zeros are
truncated.

const int NUM_FMT_FLOATING = 0bO1;
/I for currency amounts, print either 0 or two decimals,
Il e.g. $12.1 is printed as $12.10, $14 is printed as $14

const int NUM_FMT_NEEDED = 0bl00;

[print numbers as $xxx or -$xxx
const int NUM_FMT_CURRENCY

0b1000;

132

/l Format in scientific notation with the specified number

/l of decimal places, e.g. 1.234e10
= 0b10000;

const int NUM_FMT_SCI_NOTATION

// Do not commarise the output number
const int NUM_FMT_NO_COMMAS = 0b100000;

function string miformat(int x, int format, int decimal_places);

Formats an int number into a string.
Multiple format specifiers can be combined with ‘+ or bit_or().
/I print numbers as $xxx or -$xxx
= 0bl;

constint NUM_IFMT_CURRENCY =

const int NUM_IFMT_NO_COMMAS = 0b10;

function double msin(double x);

Returns the sine of x.

function double mcos(double x);

Returns the cosine of x .

function double mtan(double x);

Returns the tan of x.

function double marcsin(double x);

133

Returns the arcsine of x.

function double marccos(double x);

Returns the arccosine of x.

function double marctan(double x);

Returns the arctan of x.
function float mrandf();

Returns a random number between 0.0 and 1.0.

function int mtruncf(float x);

Truncates the decimal part of a number.

function float msqrtf(float x);

Returns the square root of x.

function float mfabsf(float x);

Returns the absolute value of float value ‘X'.

function float mfminf(float x1, float x2);

Returns the minimum of two float values.

134

function float mfmaxf(float x1, float x2);

Returns the maximum of two float values.

function float mlogf(float x);

Returns the logarithm of ‘X’ using base e.

function float mlog10f(float x);

Returns the logarithm of ‘X’ using base 10.

function float mexpf(float x);

Returns the value of e raised to the power of x .

function float mroundf(float x, int decimal_places);

Rounds a number to 'x' decimal places.

function string mformatf(float x, int format, int decimal_places);
Formats a float number into a string.
Multiple format specifiers can be combined with ‘+’ or bit_or().

Formats:

135

/I fixed number of decimal places
const int NUM_FMT_FIXED = 0b1;

// floating decimal point, compatible with commas, trailing zeros are

truncated.
const int NUM_FMT_FLOATING = 0bO01;
I/l for currency amounts, print either 0 or two decimals,
/l e.g. $12.1 is printed as $12.10, $14 is printed as $14
const int NUM_FMT_NEEDED = 0bl00;
/I print numbers as $xxx or -$xxx
const int NUM_FMT_CURRENCY = 0b1000;
/l Format in scientific notation with the specified number
/I of decimal places, e.g. 1.234e10
const int NUM_FMT_SCI_NOTATION = 0b10000;

/I Do not commarise the output number
const int NUM_FMT_NO_COMMAS = 0b100000;

function float msinf(float x);

Returns the sine of x.

function float mcosf(float x);

Returns the cosine of x .

function float mtanf(float x);

136

Returns the tan of x.

function float marcsinf(float x);

Returns the arcsine of x.

function float marccosf(float x);

Returns the arccosine of Xx.

function float marctanf(float x);

Returns the arctan of x.

function long_double mrandl();

Returns a random number between 0.0 and 1.0.

function int mtruncl(long_double x);

Truncates the decimal part of a number.

function long_double msqrtl(long_double x);

Returns the square root of x.

137

function long_double mfabsl(long_double x);

Returns the absolute value of long_double value ‘X’

function long_double mfminl(long_double x1, long_double x2);

Returns the minimum of two long_double values.

function long_double mfmaxI(long_double x1, long_double x2);

Returns the maximum of two long_double values.

function long_double mlogl(long_double x);

Returns the logarithm of X’ using base e.

function long_double mlog10I(long_double x);

Returns the logarithm of ‘X’ using base 10.

function long_double mexpl(long_double x);

Returns the value of e raised to the power of x .

function long_double mroundl(long_double x, int decimal_places);

Rounds a number to 'x' decimal places.

138

function string mformatl(long_double x, int format, int decimal_places);

Formats a long_double number into a string.
Multiple format specifiers can be combined with ‘+’ or bit_or().
Formats:

/I fixed number of decimal places
const int NUM_FMT_FIXED = 0bil;

// floating decimal point, compatible with commas, trailing zeros are
truncated.

const int NUM_FMT_FLOATING = 0b01;
/I for currency amounts, print either 0 or two decimals,
/l e.g. $12.1 is printed as $12.10, $14 is printed as $14
const int NUM_FMT_NEEDED = 0b100;
/I print numbers as $xxx or -$xxx
const int NUM_FMT_CURRENCY = 0b1000;
/l Format in scientific notation with the specified number
/I of decimal places, e.g. 1.234e10
const int NUM_FMT_SCI_NOTATION = 0b10000;

/I Do not commarise the output number
const int NUM_FMT_NO_COMMAS = 0b100000;

function long_double msinl(long_double x);

139

Returns the sine of x.

function long_double mcosl(long_double x);

Returns the cosine of x .

function long_double mtanl(long_double x);

Returns the tan of x.

function long_double marcsinl(long_double x);

Returns the arcsine of x.

function long_double marccosl(long_double x);

Returns the arccosine of x.

function long_double marctanl(long_double x);

Returns the arctan of x.

31.4. Dates & times

See also cstring_to_date(string s, string format);

This function creates a date variable from a text string. Format must be one of
dd/mm/yyyy, mm/dd/yyyy, yyyy/mm/dd or yyyy-mm-dd

140

function date dtoday();

Returns the current date.

function time tnow();

Returns the current time.

function datetime dtnow();

Returns the current date & time as a datetime variable.

function string dformat(date d, string format);

Formats a date. Values in the ‘format’ string can be:

%a Short weekday name

%A Full weekday name

%b Short month name

%B Full month name

%d Day of the month (01-31)

%e The 12-hour hour without leading zeros
%f The day of the month without leading zeros
%H Hour in 24h format (00-23)

%i The English language suffix

%l Hour in 12hr format (01-12)

%m Month as a decimal number (01-12)

%M Minute (00-59)
%p AM or PM

%P am or pm
%S Second (00-61)
%w Weekday as a decimal number with Sunday as 0

Sun
Sunday
Mar
March
19

14
1st
05
08
55
PM
pm
02

141

%y Year, last two digits (00-99) 01
%Y Year 2012
%% A % sign %

function string tformat(time t, string format);

Formats a time value., see above.

function string dtformat(datetime dt, string format);

Formats a datetime value, see above.

function int dlast_day_of_the_month(int month, int year);

Returns the day number of the last day of the specified month. Months start at 1
for January. Year must be a 4-digit year.

function date dadd(date dt, string typel, int number);

Adds 'number’ of periods of type 'type’ to a date. Typel is "day", "days", "month",

"months", "year" or "years".

function time dtadd(time t, string typel, int number);

Adds 'number’ of periods of type 'type’ to a time. Typel is "hour", "hours",

"minute”, "minutes”, "second" or "seconds"

function datetime ddtadd(datetime dt, string typel, int number);

142

Adds 'number' of periods of type 'type' to a datetime. Typel is "hour", "hours",
"minute", "minutes", "second" or "seconds"

function date dsub(date dt, string type, int number);

Subtracts 'number' of periods of type 'type' from a date. Typel is "day", "days",
"month", "months", "year" or "years"

function time dtsub(time t, string typel, int number);

Subtracts 'number' of periods of type 'type' from a time value. Typel is "hour",

"hours", "minute", "minutes”, "second" or "seconds"

function datetime ddtsub (datetime dt, string typel, int number);

Subtracts 'number' of periods of type 'type' from a datetime. Typel is "hour",

"hours", "minute", "minutes”, "second" or "seconds"

function int ddiff(date dt_from, date dt_to);

Returns the number of days from date 1 to date 2, negative if datel > date?2.

function int ddt_to_utime(datetime dt_from, string timezone)

Converts a datetime into a unix timestamp. This is an integer which is the
number of seconds since 1970-01-01 00:00:00 UTC.

The ‘timezone’ values are not defined in the Calc language but are the strings

that the operating system recognises. Examples include Australia/Melbourne,
America/New_York and UTC.

143

function datetime dutime_to_dt(int utime, string timezone);
Converts a unix timestamp into a datetime.

The unix timestamp is an integer which is the number of seconds since 1970-01-
01 00:00:00 UTC.

function bool ddatestr_is_valid(string s, string format);

Returns true if the string ‘s’ represents a valid date. Format must be one of
dd/mm/yyyy, mm/dd/yyyy, yyyy/mm/dd or yyyy-mm-dd.

function bool dtimestr_is_valid(string s);

Returns true if the string ’s’ represents a valid time HH:MM:SS

function bool ddatetimestr_is_valid(string s);

Returns true if the string ‘s’ represents a valid datetime YYYY-MM-DD
HH:MM:SS.

function int dleap_year(int year);

Returns true if the year 'year' is a leap year.

function int dweekday(date dt);

Returns the day of the week of date 'datel’, starting at O for Sunday

144

function int dday(date dt);

Returns the day of date 'd1’ as an integer.

function int dmonth(date dt);

Returns the month of date 'd1' as an integer.

function int dyear(date dt);

Returns the four digit year from date 'd1' as an integer.

function int dhour(timet);

Returns the 24-hour hour from time 't' as an integer.

function int dminute(timet);

Returns the minute of time 't' as an integer.

function int dsecond(time t);

Returns the second of time 't' as an integer.

function int ddate_to_julian(date d1);

145

Returns the Julian date for 'dt', i.e. the number of days since January 1 4713 BC.

function date djulian_to_date(int jdate);

Converts a julian date to a YYYY-MM-DD date.

function date ddate_part(datetime dt);

Returns the date part of a datetime.

function time dtime_part(datetime dt);

Returns the time part of a datetime.

function date ddate_from_parts(int day, int month, int year);

Creates a date variable from its parts.

function time dtime_from_parts(int hour, int minute, int second);

Creates a time variable from its parts.

function datetime ddatetime_from_parts(int day, int month, int year, int
hour, int minute, int second);

Creates a datetime variable from its parts.

146

function datetime ddatetime_from_vars(date dt, time t);

Creates a datetime variable from a date and time.

function string dparse_time(string text)
Converts a regular text date such as ‘2:30pm’ into ISO format ‘14:30:00'.
To check for a valid text string use the regular expression:

([1-9]]10]11|12)(:[0-5][0-9]) ?(:[0-5][0-9])? 2(am|pm|AM|PM)

31.5. ‘Binary’ data type

function void bset_size(binary b, int len);

Set the size of a binary object.

function void bclear(binary b, int num);

Set a binary object to all values 'num'. Use after bset_size();.

function int bsize(binary b);

Return the number of bytes in a binary object.

147

function void bset_byte(binary b, int pos, int byte);

Set the byte at position 'pos'. Positions start at 0 upwards.

function int bget_byte(binary b, int pos);

Get the byte at position 'pos'. Positions start at 0 upwards.

function string bint_to_hex(int x, bool pad_with_leading_zeros);

Convert an integer to a string of hex digits.

function int bhex_to_int(string s);

Converts a string of hex digits to an 'int' type.

31.6. Database

function db_connection db_login(string database, string username, string
password);

Login to a MySQL database and return a connection record.

function string db_prep_string_for_sql(string s);
Converts a text string into a suitable format for SQL by replacing apostrophes

with double apostrophes. If this function is not used and the text contains an
apostrophe then it will otherwise crash the SQL query.

148

function db_query_result db_run_query(string query, db_connection
connection);

Run an SQL query and return a result record.

function int db_query_num_rows(db_query_result query_result,
db_connection connection);

Returns the number of rows in a query result.

function bool db_query_has_rows(string query, db_connection
connection);

Returns true if a query returns at least one row.

function db_row db_get row(db_query _result query_result,
db_connection connection);

Get the next row from a query result.

function void db_free_result(db_query_result query_result, db_connection
connection);

Free the memory associated with a query result. This function should always be
called once the result of a db_run_query() operation has been processed.

It is not required for scan_db() statements.

function bool db_field_is_null(string column_name, db_row row_data)

149

Returns true if a field value is NULL in a database record.

function bool db_field_is_in_query(string column_name, db_row row_data

)

Returns true if the field ‘column_name’ exists in the query results.

function string db_get_field_string(string column_name, db_row row_data

)

Get a single string data item from a query row.

function int db_get_field_int(string column_name, db_row row_data);

Get a single integer data item from a query row.

function decimal db_get_field_decimal(string column_name, db_row
row_data);

Get a single decimal data item from a query row.

function double db_get_field_double(string column_name, db_row
row_data);

Get a single double data item from a query row.

function bool db_get_field_bool(string column_name, db_row row_data);

150

Get a single boolean data item from a query row.

function date db_get_field_date(string column_name, db_row row_data);

Get a single date data item from a query row. If the database field is blank then
the result matches NULL_DATE.

function time db_get_field_time(string column_name, db_row row_data)

Get a single time data item from a query row. If the database field is blank then
the result matches NULL_TIME.

function datetime db_get_field_datetime(string column_name, db_row
row_data);

Get a single datetime data item from a query row. If the database field is blank
then the result matches NULL_DATETIME.

31.7. Internet

function string iconvert_to_html(string text);

Convert a string into a format that is suitable for web browser display.

function string iurlencode(string text);

Converts a string into a format suitable for passing as a URL parameter, e.g.
"abc def" becomes "abc%20def"

151

function string iurldecode(string text);

Decodes a URL string into a normal text string, e.g. "abc%20def" becomes "abc
def"

function void ijump_to_page(string url);

Jump to another internet page. This function must be called before any printed
output from the program.

function void iexit_if_search_bot();
Exit the process if the calling client is a search bot.

Include the file “calc_default_styles.calc” to use the default styles for text
prompts, submit buttons etc.

function void write_ HTML_headers(string page_title, string description);

Write the standard HTML headers to ensure that displays format properly on
mobile phones.

31.8. Forms

Include the file forms_library.calc to use these functions

function void form_text(string prompt, string name, int size, string init, int
flags, string extra_text, db_connection cxn);

Display a text entry form field.

152

function void form_dropdown(string prompt, string name, string
option_str, string init, int flags, string extra_text, db_connection cxn);

Display a dropdown list form field. The “option_str” should be in the format
“<option>Value1</option><option>Value2/option><option>Value3</option>" etc.

To include a blank entry option start the option string with “<option></option>".

function void form_radio(string prompt, string name, string value, string
desc, string curr, int flags, string extra_text, db_connection cxn);

Display a radio button form field.

The form will automatically select only one option from the options that have the
same “name” value.

function void form_checkbox(string prompt, string name, string curr, int
flags, string extra_text, db_connection cxn);

Display a checkbox form field.

function void form_textarea(string prompt, string name, int rows, int cols,
string init, int flags, db_connection cxn);

Display a textarea form field, i.e. a text box with multiple lines.

function void form_password(string prompt, string name, int size, string
init, int flags, db_connection cxn);

Display a password form field. The text entered will be shown as “*****”,

153

function void form_submit (string form_name, string text, int width,
db_connection cxn);

Display a form submit button.

function void form_end(db_connection cxn);

Call this function after “form_submit();”.

function void show_link(string prompt, string page_to_jump_to,
db_connection cxn);

Show a text link on a form.

31.9. Datatype conversions

/I Numeric conversions

<<external c>> function short_int cint_to_short_int(int num);
<<external c>> function medium_int cint_to_medium_int(int num);
<<external ¢>> function byte cint_to_byte(int num);
<<external c>> function decimal cint_to_decimal(int num);
<<external ¢>> function float cint_to_float(int num);
<<external c>> function double cint_to_double(int num);

<<external c>> function long_double cint_to_long_double(int num);

<<external c>> function int cshort_int_to_int(short_int num);
<<external c>> function medium_int cshort_int_to_medium_int(short_int num

);

<<external c>> function byte cshort_int_to_byte(short_int num);
<<external c>> function decimal cshort_int_to_decimal(short_int num);
<<external c>> function float cshort_int_to_float(short_int num);
<<external c>> function double cshort_int_to_double(short_int num);

154

<<external c>> function long_double

);

<<external c>> function int
<<external c>> function short_int
num);

<<external c>> function byte
<<external ¢>> function decimal
num);

<<external c>> function float
<<external c>> function double

);

<<external c>> function long_double
medium_int num);

<<external c>> function int
<<external c>> function short_int
<<external c>> function medium_int
<<external c>> function decimal
<<external c>> function float
<<external c>> function double
<<external c>> function long_double

<<external c>> function int
<<external c>> function short_int
<<external c>> function medium_int
<<external c>> function byte
<<external c>> function float
<<external c>> function double
<<external c>> function long_double

<<external c>> function int
<<external c>> function short_int
<<external c>> function medium_int
<<external c>> function byte
<<external c>> function decimal
<<external c>> function double
<<external c>> function long_double

<<external ¢>> function int
<<external c>> function short_int

cshort_int_to_long_double(short_int num

cmedium_int_to_int(medium_int num);
cmedium_int_to_short_int(medium_int

cmedium_int_to_byte(medium_int num);
cmedium_int_to_decimal(medium_int

cmedium_int_to_float(medium_int num);
cmedium_int_to_double(medium_int num

cmedium_int_to_long_double(

cbyte_to_int(byte num);
cbyte_to_short_int(byte num);
cbyte_to_medium_int(byte num);
cbyte_to_decimal(byte num);
cbyte_to_float(byte num);
cbyte_to_double(byte num);
cbyte_to_long_double(byte num);

cdecimal_to_int(decimal num);
cdecimal_to_short_int(decimal num);
cdecimal_to_medium_int(decimal num);
cdecimal_to_byte(decimal num);
cdecimal_to_float(decimal num);
cdecimal_to_double(decimal num);
cdecimal_to_long_double(decimal num);

cfloat_to_int(float num);
cfloat_to_short_int(float num);
cfloat_to_medium_int(float num);
cfloat_to_byte(float num);
cfloat_to_decimal(float num);
cfloat_to_double(float num);
cfloat_to_long_double(float num);

cdouble_to_int(double num);
cdouble_to_short_int(double num);

155

<<external c>> function medium_int
<<external c>> function byte
<<external c>> function decimal
<<external c>> function float
<<external c>> function long_double

<<external c>> function int
<<external c>> function short_int
num);

<<external c>> function medium_int
long_double num);

<<external c>> function byte

);

<<external c>> function decimal
num);

<<external ¢c>> function float

);

<<external c>> function double
num);

/l Conversions to string

function string cint_to_string(int num);

cdouble_to_medium_int(double num);
cdouble_to_byte(double num);
cdouble_to_decimal(double num);
cdouble_to_float(double num);
cdouble_to_long_double(double num);

clong_double_to_int(long_double num);
clong_double to_short_int(long_double

clong_double_to_medium_int(
clong_double_to_byte(long_double num
clong_double_to_decimal(long_double
clong_double to float(long_double num

clong_double_to double(long_double

function string cdecimal_to_string(decimal num);
function string cdouble_to_string(double num);
function string cbool_to_string(bool x);

function string cdate_to_string(date dt, string format);

function string ctime_to_string(time t);

function string cdatetime_to_string(datetime dt, string format);

/I Conversions from string

function int cstring_to_int(string s);

function decimal cstring_to_decimal(string s);
function double cstring_to_double(string s);

function bool cstring_to_bool(string s);

function date cstring_to_date(string s, string format);

156

creates a date variable from a text string. format must be one of
dd/mm/yyyy, mm/dd/yyyy, yyyy/mm/dd or yyyy-mm-dd

function time cstring_to_time(string s);
function datetime cstring_to_datetime(string s);

/I Conversions to/from binary

function string cbinary_to_string(binary b, bool output_as_hex);

convert a binary block into a text string. If 'output_as_hex' is true the output
is hexadecimal digits, otherwise it is a text string ending at the length of the
block.

function int cbinary_to_int(binary b);

function decimal chinary_to_decimal binary b);
function double cbinary_to_double(binary b);
function date chinary_to_date (binary b);
function time cbinary to_time (binary b);

function datetime cbhinary_to_datetime (binary b);

function binary cstring_to_binary(string s, bool input_is_hex);

converts a text string to a binary object, either hex digits input or directly to
binary.

function binary cint_to_binary(int num);

function binary cdecimal_to_binary(decimal num);
function binary cdouble_to_binary(double num);
function binary cdate_to_binary(date s1);

function binary ctime_to_binary(time s1);

function binary cdatetime_to_binary(datetime s1);

/I Other type conversions

157

function datetime cdate_to_datetime(date dt1);
function string cbyte_to_string(int num);

converts a single byte int value into a one-character numeric string
function int cstring_to_byte(string s);

converts a one-character numeric string into an int value

31.10. Bit functions

The bit operations in Calc use the ‘int’ data type.

function int bit_and(int num1, int num2);

Bitwise AND of the bits in 'numl' and 'num?2'.

function int bit_or(int num1, int num2);

Bitwise OR of the bits in 'num1' and 'num?2'.

function int bit_xor(int numl, int num2);

Bitwise XOR of the bits in 'num1' and 'num?2'.

function int bit_not(int num);

Bitwise NOT of the bits in ‘num’.

158

function int bit_shift_left(int num);

Left shift one place of the bits in 'num’ (filled with 0's).

function int bit_shift_right(int num);

Right shift one place of the bits in 'num’ (filled with sign bits).

function bool bit_is_set(int num, int opt);
Returns true if the bit 'opt' is set in 'num’, i.e. an AND operation is not zero.

‘Opt’ should be 0b1, 0b10, 0b100 etc.

31.11. Miscellaneous

function void msort(resizable array of double num, resizable array of int
keys, int number_of _elements, bool ascending);

Sort an array of doubles. Sets an array of ints (keys). The values in this array are
indexes into the original array of double values.

function void ssort(resizable array of string num, resizable array of int
keys, int number_of_elements, bool ascending);

Sort an array of strings. Sets an array of ints (keys). The values in this array are
indexes into the original array of string values.

function void gsort(resizable array of link to general num, resizable array
of int keys, int number_of_elements, string compare_function_name);

159

General sort function. Sorts an array of links to any data type, using a user-
defined sort function.

function int array_index_size(resizable array of int x, int index_nunber);

Return the size of an index of any resizable array. Index_numbers start at 1.

function int array_number_of_dimensions(resizable array of int x);

Return the number of dimensions of any resizable array.

31.12. System functions

function string syget_get_parameter(string parameter);
Returns a GET parameter, i.e. a value passed in a URL string such as:

www.address.com.au?paraml=valuel¶m2=value?2

function string syget_get_parameter_key(int num);

Returns GET parameter key number ‘num’. Count starts at zero.

function string syget_get_parameter_value(int num);

Returns GET parameter value number ‘num’. Count starts at zero.

160

function int syget_get_parameter_count();

Returns the number of GET parameters.

function string syget_post_parameter(string parameter);

Returns a POST parameter, i.e. a value passed into the program from a data
entry form.

function string syget_post_parameter_key(int num);

Returns POST parameter key number ‘num’. Count starts at zero.

function string syget_post_parameter_value(int num);

Returns POST parameter value number ‘num’. Count starts at zero.

function int syget_post_parameter_count();

Returns the number of POST parameters.

function string syget_session_variable(string parameter, db_connection
cxn);

Returns the value of a session variable. Session variables are used to pass data
from one Calc web page to another Calc web page.

function void syset_session_variable(string parameter, string value,
db_connection cxn);

161

Sets the value of a session variable. Session variables are used to pass data
from one Calc web page to another Calc web page.

function void syexit(int exit_code);

Exit the current process. The exit code is passed to the shell calling the Calc
program, and is generally O for normal exit and a number for an error code.

function string syget_ip_address();

Returns the IP address of the client.

function bool sylow_res_screen();

Returns true if the session is running on a low-resolution screen, generally a
smartphone.

function void sydump_call_stack ();

Call this function when an error is detected in the program. This will print the call
stack, i.e. the line number in each function that has been called, which will
greatly aid debugging.

31.13. ‘list’ and ‘llist’ types

list’ data type

162

“w

Each item inserted into a list should have a unique key. An empty string *” cannot

be used as a key for a list item.
function void list : create(int options)

Creates a list. The ‘options’ parameter is for future expansion and is not currently
used.

function int list : insert_s(string key, link to general data_ptr)

Insert an item into a list (with a string-type key). The ‘data_ptr’ parameter is a link
type, linked to the data that is to be stored in the list.

Returns 0 for success and 1 for a duplicate key.

function int list : insert_i(int key, link to general data_ptr)

Insert an item into a list (with a int-type key). The ‘data_ptr’ parameter is a link
type, linked to the data that is to be stored in the list.

Returns 0 for success and 1 for a duplicate key.

function int list : insert_b(binary key_bits, link to general data_ptr)

Insert an item into a list (with a binary-type key). The ‘data_ptr’ parameter is a
link type, linked to the data that is to be stored in the list.

Returns 0 for success and 1 for a duplicate key.

function link to general list : search_s (string key, bool found)

163

Search a list for an item with the key ‘key’ (string-type key). This function sets the
value of the ‘found’ parameter, and if found returns a link to the ‘data_ptr’ that
was inserted into the list.

If not found this function returns NULL_LINK.

function link to general list : search_i (int key, bool found)
Search a list for an item with the key ‘key’ (int-type key). This function sets the
value of the ‘found’ parameter, and if found returns a link to the ‘data_ptr’ that

was inserted into the list.

If not found this function returns NULL_LINK.

function link to general list : search_b (binary key_bits, bool found)
Search a list for an item with the key ‘key’ (binary-type key). This function sets
the value of the ‘found’ parameter, and if found returns a link to the ‘data_ptr’ that

was inserted into the list.

If not found this function returns NULL_LINK.

function bool list : key found_s (string key);

Returns ‘true’ if there is an item in the list with the key ‘key’ (string-type key).

function bool list : key found_i (int key);

Returns ‘true’ if there is an item in the list with the key ‘key’ (int-type key).

function bool list : key found_b (binary key_bits);
164

Returns ‘true’ if there is an item in the list with the key ‘key’ (binary-type key).

function bool list : delete_item_s (string key);

Deletes an item from a list (string-type key). Returns ‘true’ if the item was found.

function bool list : delete_item_i (int key);

Deletes an item from a list (int-type key). Returns ‘true’ if the item was found.

function bool list : delete_item_b (binary key_bits);

Deletes an item from a list (binary-type key). Returns ‘true’ if the item was found.

function bool list : first_item(list_item nptr, bool ascending);

This function sets the ‘nptr’ parameter to the first item in the list, in ascending or
descending order.

Returns ‘true’ if there is at least one item in the list.

function bool list : next_item(list_item nptr, bool ascending);

This function sets the ‘nptr’ parameter to the next item in the list, in ascending or
descending order, starting at current position ‘nptr’.

Returns ‘true’ if the current item is not the last item in the list.

165

function int list : total_items_in_list();

Returns the number of items in the tree, including the count of duplicates if one
or more items were inserted more than once.

function int list : unique_items_in_list();

Returns the number of items in the tree, counting each item once, regardless of
duplicates.

function link to general list_item : get_data_ptr();

Returns the ‘data_ptr’ for a list item, which is the link that was passed to the
‘insert’ function call.

function string list_item : get_key_s();

Returns the key of a list item (string-type key).

function int list_item : get_key_i();

Returns the key of a list item (int-type key).

function binary list_item : get_key_b();

Returns the key of a list item (binary-type key).

166

‘llist’ data type (Linked List)

function void lInew(llist 11, int options);

Create a ‘llist’ variable. The ‘options’ parameter is for future expansion and is not
currently used.

function void llinsert(llist |1, string key, link to general data_ptr);

Insert an item into a linked list. This function does not search the list for
duplicates.

function link to general llsearch(llist |1, string key);

Search for an item in a linked list. This function returns the ‘data_ptr’ that was
passed to the ‘insert’ function call, or NULL_LINK if the item was not found.

function bool llist_first_item(link to llist 11, link to llist_current 12, bool
ascending);

Sets the ‘llist_current’ value to the first item in a list. If ‘ascending’ is ‘true’, the
items are returned in the order that they were inserted into the list. Otherwise the
items are returned in reverse order to their insertion order.

function bool llist_next_item(link to Ilist_current current_item, bool
ascending);

Sets the ‘llist_current’ value to the next item in a list. If ‘ascending’ is ‘true’, the
items are returned in the order that they were inserted into the list. Otherwise the
items are returned in reverse order to their insertion order.

167

31.14. Vectors

function vector vec_set_size(vector X, int size);

Set the number of items in a vector. Existing data in the vector is preserved.

function int vec_get_size(vector x);

Return the number of items in a vector.

function void vec_set_item(vector x, int item, double value);

Sets an item in a vector.

function double vec_get_item(vector x, int item);

Returns an item from a vector.

function vector vec_add(vector x, vector y);
Add each element in 'y' to its corresponding element in 'X'".
function vector vec_subtract(vector x, vector y);

Subtract each element in 'y' from its corresponding element in 'x'.

168

function vector vec_multiply(vector x, vector y);

Multiply each element in 'y' by its corresponding element in 'x'.

function vector vec_divide(vector x, vector y);

Divide each element in 'y' into its corresponding element in 'X'.

function vector vec_square(vector x);

Square each element in 'x'.

function vector vec_sqroot(vector x);

Take the square root of each element in 'X'.

function vector vec_add_scalar(vector x, doubley);

Add 'y’ to each element in 'X'.

function vector vec_subtract_scalar(vector x, double y);

Subtract 'y’ from each element in 'x'.

function vector vec_multiply_scalar(vector x, double y);

Multiply 'y' by each element in 'x'.

169

function vector vec_divide_scalar(vector x, doubley);

Divide 'y" into to each element in 'X'.

function double vec_sum(vector x);

Return the sum of all elements in 'X'.

function double vec_average(vector x);

Return the arithmetic average of the elements in 'x'".

function vector vec_negate(vector x);

Reverse the sign of each item in vector 'X'".

function double vec_min_value(vector x);

Returns the minimum value in a vector.

function double vec_max_value(vector x);

Returns the maximum value in a vector.

function vector vec_sort(vector x, bool ascending);

Return a sorted vector.

170

function vector vec_clean_data(vector x, bool remove_negative_numbers,
bool remove_zeros, bool remove_outliers, double

outlier_num_of standard_deviations, bool filter_out_low_values, double
low_value_threshold, bool filter_out_high_values, double
high_value_threshold);

Clean up a data set. If remove_outliers is true, any values more that

‘outlier_num_of standard_deviations’ from the mean are removed from the result
set.

function double vec_percentile(vector x, double percentile);

Return the percentile value from the data set. Percentile between 0.0 and 1.0,
e.g. 0.9 for the 90th percentile.

function vector vec_continuous_var_frequency(vector x, int
number_of buckets, double step_size per_bucket);

Returns a vector with the frequency of input values in each bucket. The
‘step_size_per_bucket’ does not need to be passed, it is a return value.

function vector vec_integer_variable_frequencies(vector x, vector
x_without_duplicates);

Generates an array of distinct values, and returns a vector of the number of
occurrences of each value.

31.15. Vectors of strings

function void vecs_set_size(vector_s X, int size);

171

Set the number of items in a vector.

function int vecs_get_size(vector_s x);

Return the number of items in a vector.

function void vecs_set_item(vector_s X, int item, string value);

Sets an item in a vector.

function string vecs_get_item(vector_s x, int item);

Returns an item from a vector.

function vector_s vecs_sort(vector_s x, bool ascending);

Sorts a string vector.

function vector vecs_process_duplicates(vector_s x, vector_s
X_without_duplicates);

Generates an array of distinct strings, and returns a vector of the number of

duplicates for each output string.

31.16. Statistics

function double st_linear_regression_slope(vector x, vector y);

Return the least-squares linear regression slope of x, y.

172

function double st_linear_regression_intercept(vector x, vectory);

Return the least-squares linear regression intercept of x, y.

function vector st_linear_regression_forecast(vector x, double slope,
double intercept);

Calculate the y point on the line for each value in 'X'.

function double st_correlation(vector x, vector y);

Return the correlation on the values in x, y

function double st_stdev_p(vector x);

Returns the population standard deviation.

function double st_stdev_s(vector x);

Returns the sample standard deviation.

31.17. Finance

function double fin_general_calc(int calculation_type, double
initial_amount, double final_value, double additional_amount_per_period,
double additional_amount_growth_rate, double fund_growth_rate, int
number_of_periods, bool solution_found);

173

General purpose financial calculator.

Usable for calculating loan repayments, retirement fund values, asset
replacement funds etc.

const int FIN_CALC_CALC_INITIAL_VALUE =1;

const int FIN_CALC_CALC_FINAL_VALUE =2:

const int FIN_CALC_CALC_AMOUNT_PER_PERIOD =3;
constint FIN_CALC_CALC _INTEREST_RATE =4,

const int FIN_CALC_CALC_NUMBER_OF_PERIODS =5;

int calculation_type See above

double initial_amount Positive, negative or O
double final_value Positive, negative or O
double additional_amount_per_period Amount added/withdrawn per
period

double additional_amount_growth_rate Percentage increase in the

amount added/withdrawn per period, per period

double fund_growth_rate Interest rate/growth rate in fund
value per period (percent)

int number_of_periods Number of periods

bool solution_found Returns true if a solution was found

For loan calculations the amount added per period should have the opposite sign
to the initial value.

174

31.18. Printed output

For printed output from Calc programs, the PDF format is recommended.

To use the PDF functions, create a PDF document with pdf_create(), write text to
it with pdf_add_text(), then call pdf_save_to_file() to save the document to a file

which the user can open to view or print.

Coordinates are in points (1/72 inch), origin is the top left corner, x is horizontal

coordinate.

Fonts supported are: Courier, Courier-Bold, Courier-BoldOblique, Courier-
Oblique, Helvetica, Helvetica-Bold, Helvetica-BoldOblique, Helvetica-Oblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic, Symbol, ZapfDingbats.

Colors are 32 bit integers:
color = bit_shift_left(alpha_value, 24) +
bit_shift_left(red_value, 16) +
bit_shift_left(green_value, 8) +
blue_value;
alpha_value: 0 (opaque) to 255 (transparent)
red_value/green_value/blue_value: 0 to 255

const double A4 PAGE_HEIGHT = 841.8898; Il pt
const double A4 PAGE_WIDTH = 595.2756; Il pt

For example:

var link to t pdf this pdf;

this pdf = pdf create(A4 PAGE WIDTH, A4 PAGE HEIGHT, "", "",

, wn),.

wn wn
14

pdf set font(this pdf, "Helvetica");

pdf add text(this pdf, "“Test text”, 12, 35, 35);

175

pdf new page(this pdf);

pdf save to file(this pdf, output filename);

function link to t_pdf pdf_create(double page_height, double page_width,
string creator_text, string producer_text, string title_text, string
author_text, string subject_text, string date_text);

function void pdf_set_font(link to t_pdf this_page, string font_name);

function void pdf_add_text(link to t_pdf this_page, string text, double
font_size, double y_position, double x_position);

function void pdf_add_text_right_align(link to t_pdf this_page, string text,
double font_size, double y_position, double x_position);

function void pdf_add_text_center_within_field(link to t_pdf this_page,
string text, double font_size, double y_position, double x_position, double
field_width);

function void pdf_add_text2(link to t_pdf this_page, string text, double
font_size, double y_position, double x_position, int color, int
truncation_type, double max_width);

Write a line of text. truncation_type: 0 (no truncation), 1 (truncate characters), 2
(truncate words). text is truncated to fit within 'max_width' unless
‘truncation_type'is 0

function double pdf_add_text_wrap(link to t_pdf this_page, string text,
double font_size, double x_position, double y_position, int color, double
wrap_width, double line_spacing, double page_top_margin, double
page_bottom_margin);

176

Write a paragraph onto a rectangular area of the page. Returns the new y
position

function void pdf_new_page(link to t_pdf this_page);

function void pdf_save to_file(link to t_pdf this_page, string filename);

function void pdf_set_as_portrait(link to t_pdf this_page);

function void pdf_set_as_landscape(link to t_pdf this_page);

function double pdf_get text width(link to t_pdf this_page, string
font_name, string text, double font_size);

function void pdf _free(link to t_pdf this_page);

function string pdf_get_error(link to t_pdf this_page);

function void pdf_clear_error(link to t_pdf this_page);

32. Memory leaks

A correctly written Calc program shouldn’t have memory leaks (items of allocated
memory that are disconnected from the program and are never freed).

Small memory leaks are not a serious problem in call-response programs such

as web pages or compilers. However they are a serious problem for programs
that are intended to run continuously.

177

A few things to watch out for:

1. After a database query always call db_free_result() on the returned result
before the function ends.

2. Items created with ‘new’ are never deallocated until the program calls
‘free’ on a variable linked to that memory item.

3. Local variables are automatically freed when the function ends, including
resizable arrays that have been allocated with ‘setsize’.

33. Commentary

1. Calc variables are initialised at the start of the program execution (global
variables) or at the start of the function code (local variables). This action has a
small performance penalty but is designed to help produce more stable and
robust program code.

In languages where variables are not initialised, such as C, each variable
typically has a random value at the start of code execution. This means that if
there is a bug in the program, a program can be run twice, with identical inputs,
and produce different outputs. In these cases it is extremely difficult to reproduce
a problem for debugging and bugs can remain in the program for years without
being found.

2. Simple Calc variables are ‘pass by value’ by default as function parameters.
This feature of the language is a safety feature. If an application program calls an
external library, the code in the external library cannot change the value of the

application variables, unless the programmer specifically allows this by using the
‘ref’ keyword.

178

34. Complete program examples

Example 1

Listed below is a complete example program. This is a simple web based
calculator for calculating repayments on a loan.

This consists of two source files, sample_programl.calc and
sample_program2.calc

Sample_programl.calc

include "stdlib.calch";

include "calc default styles.calc";
include "forms library.calch";
module type main;

module name sample programl;

link module stdlib;

link module forms library;

function void form start(db_connection cxn, string handler);

function int main(int argc, resizable array of string argv)
{ var db connection cxn;
write HTML headers(“Sample program”, “Loan calculator”);
output ("<style>");
calc _default styles();
output ("</style>");

cxn = db login("aitkencv_ aitkencv", "XXXXXX", "XXXXXX");

output ("
");
output ("
");

179

output ("<table width='100%"'><tr><td align='center'>");

form start(cxn, "/run.php?file=sample program2.exe");
form text("Amount", "amount", 12, "", 0, "", cxn);
form text("Interest rate", "interest rate", 12, "", O,

"$ p.a.", cxn);

form text("Years", "years", 12, "", 0, "", cxn);

form submit("form", "Calculate", 110, cxn);
output ("</table></td></tr></table>");
form end(cxn);

syexit(0);

function void form start(db_connection cxn, string handler)

{

output ("<form id='form' name='form' action='" & handler & "'
method='POST'><table style='border: lpx solid #bbbbbb; background:
#F8FbFF; border-radius: 10px'>\n");
}

Sample_program2.calc

include "stdlib.calch";
module type main;
module name “sample program2”;

link module “stdlib”;

function int main(int argc, resizable array of string argv)

{
var double amount, interest rate, years;
var double rate, repayment;

write HTML headers(“Sample program”, “Loan calculator”);

amount = cstring to double(syget post parameter("amount"));

180

interest rate = cstring to double(syget post parameter (

"interest rate"));
years = cstring to double(syget post parameter("years"));
if (interest rate == 0)
{
print ("Please enter a non-zero interest rate.");
result = 1;
}
else
{
rate = (interest rate / 100) / 12;
repayment = amount / ((1 - (1 + rate) ~ (-(years*12)))
/ rate);

print ("Amount: $" & mformat (amount, NUM FMT FIXED
0));
4

print ("Interest rate: " & mformat(interest rate,
NUM FMT FIXED, 2) & "%");

print("Years: " & years);
print(nwn),.

print ("Repayments: $" & mformat (repayment,
NUM FMT FIXED, 2) & " per month.");

result = 0;

181

Example 2

Listed below is an example program using files and arrays. This program reads

an input file and prints it out in reverse order.

include "stdlib.calch";

link module stdlib;

const int MAX INPUT FILE LINES = 100000;

var array [MAX INPUT FILE LINES] of string text lines;

function int main(int argc, resizable array of string argv)

{
var int line number, i;
var file interface fp;
var bool successful open;

fp = fopen("input file.txt", FILE MODE READ,

ref successful open);

if (not successful open)

{

print("Can't open input file: input file.txt"

syexit(1);

line number = 0;

while (not feof(fp))
{

text lines[line number] = fgets(fp);

line number++;

if (line number >= MAX INPUT FILE LINES)
{

print ("Too many lines in the input file."

syexit(1);

fclose(fp);

);

182

for (i=line number-1 to 0 step -1)
print (text lines[i]);

183

35. Applications: Finite State Automata

A Finite State Automaton, also called a Finite State Machine, is a powerful
programming technique that can reduce a variety of problems to simple sections

of code.

This technique works by defining a ‘state’, which changes depending on a
stream of input text or other conditions.

As an example a simplified version of the standard library function for checking
whether input text is a valid number or not is shown below.

function bool text is valid number2(string text)

{

var int pos;

var int len;

var int state;

var bool is numeric;
var string ch;

var bool has digit;

is numeric = true;

has digit = false;

pos =

len =

state

while

{

0;
slength(text);
= 1;
(pos < len and is numeric)
ch = schar(text, pos);
if (not has_digit)
{ if (is_digit(ch))
has digit = true;

}

switch (state)

{

// first character
case 1:

if (ch == "-")

184

}

if

case 2:

case 3:

case 4:

case 5:

pos++;

(not has digit)

state = 2;

else
if (ch == ".")
state = 3;
else
if (is_digit(ch))
state = 2;
else
is numeric = false;

// string of digits before '.'

if (ch == ".")
state = 3;
else
if (not is digit(ch))
is numeric = false;

// string of digits after '.'

if (ch == "e" or ch == "E")
state = 4;

else

if (not is digit(ch))
is numeric = false;

// first character after 'e' or
if (ch == "-")
state = 5;
else
if (not is digit(ch))
is numeric = false;
else
state = 5;

// string of digits after 'e' or

if (not is digit(ch))
is numeric = false;

'R

TR

185

is numeric = false;

result = is numeric;

function bool is digit(string ch)
{
if (ch >= "0" and ch <= "9")
result = true;
else
result = false;

186

36. Language grammar

Shown below is a full grammar for the Calc language.

The Calc language grammar is a LL(1) grammar, meaning that it can be parsed
with a top-down parser using a one-token lookahead.

This grammar has one ambiguity, which is the if-else ambiguity.

The sequence ‘if — if — else’ can be parsed as ‘if — (if — else) or ‘(if — if) — else’.

As with most programming languages the Else is associated with the nearest If.

file:

global_statement:

type_definition:

type_variable_list:

/* empty */
global_statement file

TOK_MODULE_NAME
TOK_STRING_CONSTANT
TOK_SEMICOLON
TOK_MODULE_TYPE
TOK_STRING_CONSTANT
TOK_SEMICOLON
TOK_LINK_MODULE
TOK_STRING_CONSTANT
TOK_SEMICOLON
type_definition
const_declaration
variable_declaration
function_definition

TOK_TYPE TOK_NAME datatype
TOK_SEMICOLON

datatype name_list TOK_SEMICOLON
datatype name_list TOK_SEMICOLON
type_variable_list

187

name_list:

const_declaration:

constant- num-expression:

constant-string-expression:

constant-boolean-
expression

constant-date-expression:

TOK_NAME
TOK_NAME TOK_COMMA name_list

TOK_CONST TOK_INT TOK_NAME
TOK_ASSIGN constant-num-expression
TOK_SEMICOLON

TOK_CONST TOK_DECIMAL TOK_NAME
TOK_ASSIGN constant- num-expression
TOK_SEMICOLON

TOK_CONST TOK_DOUBLE TOK_NAME
TOK_ASSIGN constant- num-expression
TOK_SEMICOLON

TOK_CONST TOK_BOOL TOK_NAME
TOK_ASSIGN constant-boolean-expression
TOK_SEMICOLON

TOK_CONST TOK_STRING TOK_NAME
TOK_ASSIGN constant-string-expression
TOK_SEMICOLON

TOK_CONST TOK_DATE TOK_NAME
TOK_ASSIGN constant-date-expression
TOK_SEMICOLON

TOK_CONST TOK_TIME TOK_NAME
TOK_ASSIGN constant-time-expression
TOK_SEMICOLON

TOK_CONST TOK_DATETIME TOK_NAME

TOK_ASSIGN constant-datetime-expression
TOK_SEMICOLON

add-expr

num_expr

TOK_BOOLEAN_CONSTANT
TOK_NAME

TOK_DATE_CONSTANT
TOK_NAME

188

constant-time-expression

constant-datetime-
expression

datatype:

datatypel:

array_index_size_list:

function_definition:

TOK_TIME_CONSTANT
TOK_NAME

TOK_DATETIME_CONSTANT
TOK_NAME

datatypel
TOK_ARRAY TOK_LBRACKET
array_index_size_list TOK_RBRACKET
TOK_OF datatype
TOK_RESIZABLE TOK_ARRAY TOK_OF
datatype
TOK_LINK TOK_TO datatype
TOK_OBJECT TOK_LBRACE variable-list
TOK_RBRACE

TOK_INT
TOK_SHORT_INT
TOK_MEDIUM_INT
TOK_BYTE
TOK_DECIMAL
TOK_FLOAT
TOK_DOUBLE
TOK_LONG_DOUBLE
TOK_STRING
TOK_BOOL
TOK_DATE
TOK_TIME
TOK_DATETIME
TOK_BINARY
TOK_NAME

constant-num-expression
constant-num-expression TOK_COMMA
array_index_size_list

TOK_FUNCTION function_return_type
TOK_NAME TOK_LPARENTHESIS

189

function_parameter_list_all
TOK_RPARENTHESIS TOK_SEMICOLON

TOK_FUNCTION function_return_type
TOK_NAME TOK_LPARENTHESIS
function_parameter_list_all
TOK_RPARENTHESIS TOK_LBRACE stat_list

TOK_RBRACE

TOK_VOID
function_return_type: datatype

/* empty */
function_parameter_list_all: | function_parameter_list

function_parameter
function_parameter_list: function_parameter TOK_COMMA
function_parameter_list

datatype TOK_NAME
function_parameter: ;

variable_declaration: TOK_VAR datatype var_declaration_list
TOK_SEMICOLON

var_declaration_list var_declaration
var_declaration TOK_COMMA
var_declaration_list

var_declaration TOK_NAME
TOK_NAME TOK_ASSIGN constant_expr

TOK_SEMICOLON

190

stat: TOK_LBRACE stat_list TOK_RBRACE

if_statement

for_statement

while_statment

do_statment

repeat_statement

switch_statment

scan_list_statement

scan_db_statement

free_statement

function_table_statement

call_table_function

setsize_statement

TOK_NAME function_call

TOK_INC aggregate_expression

TOK_SEMICOLON

| TOK_DEC aggregate_expression
TOK_SEMICOLON

| aggregate_expression TOK_INC
TOK_SEMICOLON

| aggregate_expression TOK_DEC
TOK_SEMICOLON

| function_call TOK_SEMICOLON

| aggregate_expression assignment_right_side
TOK_SEMICOLON

| variable_declaration

stat_list: /* empty */
| stat stat_list

setsize_statement: TOK_SETSIZE aggregate_expression TOK_LT
array_index_size_list TOK_GT
TOK_SEMICOLON

aggregate_expression: TOK_NAME dereference

dereference: [* empty */
| aggregate_expression TOK_LBRACE
<datatype> TOK_RBRACE dereference
| TOK_NAME TOK_DOT dereference
| TOK_DOT TOK_NAME dereference

191

expression_list:

assignment_right_side:

free_statement:

function_table_statement:

name_list:

call_table_function:

while_statment:

do_statment:

TOK_LBRACKET expression_list
TOK_RBRACKET dereference

bool_expr
bool_expr TOK_COMMA expression_list

TOK_ASSIGN bool_expr

TOK_ASSIGN TOK_MULT
aggregate_expression

TOK_NEW datatype
TOK_ASSIGN_INC num_expr
TOK_ASSIGN_DEC num_expr
TOK_ASSIGN_MULT num_expr
TOK_ASSIGN_DIV num_expr
TOK_ASSIGN_STRCONCAT num_expr

TOK_FREE aggregate_expression
TOK_SEMICOLON

TOK_FUNCTION_TABLE name_list
TOK_SEMICOLON

TOK_NAME
TOK_NAME string_constant_list

TOK_CALL_FUNCTION TOK_LPARENTHESIS
aggregate_expression TOK_COMMA num_expr
TOK_RPARENTHESIS TOK_SEMICOLON

TOK_WHILE TOK_LPARENTHESIS bool_expr
TOK_RPARENTHESIS stat

TOK_DO stat TOK_WHILE
TOK_LPARENTHESIS bool_expr
TOK_RPARENTHESIS TOK_SEMICOLON

192

repeat_statement: TOK_REPEAT num_expr TOK_TIMES stat

for_statement: TOK_FOR TOK_LPARENTHESIS TOK_NAME
TOK_ASSIGN num_expr TOK_TO num_expr
TOK_RPARENTHESIS stat

TOK_FOR TOK_LPARENTHESIS TOK_NAME
TOK_ASSIGN num_expr TOK_TO num_expr
TOK_STEP num_expr TOK_RPARENTHESIS
stat

scan_list_statement TOK_SCAN_LIST TOK_LPARENTHESIS
TOK_NAME TOK_IN aggregate_expression
TOK_NAME TOK_RPARENTHESIS statement

scan_db_statement TOK_SCAN_DB TOK_LPARENTHESIS
TOK_NAME, TOK_COMMA bool_expr
TOK_COMMA TOK_NAME TOK_COMMA
TOK_NAME TOK_COMMA TOK_NAME
TOK_RPARENTHESIS statement

TOK_SCAN_DB TOK_LPARENTHESIS
TOK_NAME, TOK_COMMA bool_expr
TOK_COMMA TOK_NAME TOK_COMMA
TOK_NAME TOK_RPARENTHESIS statement

switch_statment: TOK_SWITCH TOK_LPARENTHESIS
num_expr TOK_RPARENTHESIS
TOK_LBRACE case_list TOK_RBRACE

TOK_SWITCH TOK_LPARENTHESIS
num_expr TOK_RPARENTHESIS
TOK_LBRACE case_list TOK_DEFAULT
TOK_COLON stat TOK_RBRACE

case_list: TOK_CASE expression_list TOK_COLON stat
TOK_CASE expression_list TOK_COLON stat
case_list

if_statement: TOK_IF TOK_LPARENTHESIS bool_expr

TOK_RPARENTHESIS stat

193

bool_expr:

rel_expr:

num_expr:

add_expr:

mult_expr:

exp_expr:

TOK_IF TOK_LPARENTHESIS bool_expr
TOK_RPARENTHESIS stat TOK_ELSE stat

rel_expr

rel_expr TOK_AND bool_expr
rel_expr TOK_OR bool_expr
rel_expr TOK_XOR bool_expr

num_expr

TOK_NOT num_expr

num_expr TOK_IN TOK_LBRACE
expression_list TOK_RBRACE
num_expr TOK_EQ num_expr
num_expr TOK_NE num_expr
num_expr TOK_GT num_expr
num_expr TOK_GE num_expr
num_expr TOK_LT num_expr
num_expr TOK_LE num_expr

add_expr
add_expr TOK_ADDR_STRCONCAT num_expr

mult_expr
mult_expr TOK_PLUS add_expr
mult_expr TOK_SUBTRACT_MINUS add_expr

exp_expr

exp_expr TOK_MULT mult_expr
exp_expr TOK_DIV mult_expr
exp_expr TOK_MOD mult_expr

item_expr
item_expr TOK_POW exp_expr

194

item_expr: TOK_LPARENTHESIS bool_expr
TOK_RPARENTHESIS
TOK_SUBTRACT_MINUS item_expr
function_call dereference
aggregate_expression

TOK_INC aggregate_expression
TOK_DEC aggregate_expression
aggregate_expression TOK_INC
aggregate_expression TOK_DEC
TOK_NUMBER

TOK_NUMBER TOK_NAME
TOK_STRING_CONSTANT
TOK_DATE_CONSTANT
TOK_TIME_CONSTANT
TOK_DATETIME_CONSTANT
TOK_BOOLEAN_CONSTANT

function_call: TOK_NAME TOK_LPARENTHESIS
TOK_RPARENTHESIS
TOK_NAME TOK_LPARENTHESIS
expression_list TOK_RPARENTHESIS

Compiler directives

Compiler directives should be enclosed in ‘<<’ ‘>>’ characters.

The Wattleglen compiler recognises the following directives

<<external c>> Link the Calc program to external C functions.

The Wattleglen interpreter recognises the following directives:

<<builtin 123>> Link the Calc program to linked in C functions.

Calc compilers should parse compiler directive expressions as ‘<< token-
seguence >>', and implement any directives that they recognise.

195

Semantic overlays:

1. Control statements such as ‘if’, ‘while’ etc require an expression of 'bool' type.

2. The ‘switch’ statement can take a control value that is a numeric type, a string,
date, time or datetime type.

3. ‘For’ loops require a numeric variable as the control variable.

Procedure for a ‘for’ loop

Calc compilers should be compatible with the following procedure:

1. Set the control variable equal to the value of the initial value expression.
2. Evaluate the end value expression.

3. Evaluate the step size expression, if any. If there is no step size
expression set the step size value to +1.

4. If the step size is zero, generate a runtime error.

5. For positive step sizes:

6. Check the value of the control variable against the end value. If it is
greater than the end value, jump to the next statement after the loop.

7. Execute the code inside the loop.
8. Increment the control variable by the step size.

9. Jump to step 6.

10. For negative step sizes:

196

11. Check the value of the control variable against the end value. If it is less
than the end value, jump to the next statement after the loop.

12. Execute the code inside the loop.
13. Decrement the control variable by the step size.

14. Jump to step 11.

37. Future expansion
| have tried to make the Calc language as complete as possible.

The language is designed for application development and non-performance-
critical system code such as writing compilers.

It is my hope that if it is used in the future, few if any changes will be made to the
language.

Development of new compilers, libraries and tools is encouraged and
appreciated.

One of the strengths of a language like C is that it has undergone almost no
changes in 30 years. Similarly with SQL.

This indicates that these languages addressed their problem set in a complete
way.

However other languages such as C++ are continually being expanded and
made more complex, which in time might ruin them.

Having said that | have some items for future expansion.

List syntax

| would like to have the syntax x = y[“item”] and y[‘item”] = 100 as well as calling
the list functions directly.

197

Memory freeing

At present memory allocated using ‘new’ is never freed unless ‘free’ is manually
called.

This is not a major problem for call-response models such as web pages, but it is
a big potential problem for code that must run continuously.

| would like to have automatic freeing of out-of-scope memory. However this is
non-trivial in Calc because Calc supports linked structures, so it is not always
easy to determine which part of a structure should be freed.

#if

It would be good if the #set and #if operations supported numeric types and

expressions as well as booleans.

Memory corruption

The syntax and semantics of Calc are designed so that it is possible to
implement the language in such a way that memory corruptions due to errors in
application code are impossible.

The current compiler is about 95% of the way there on this issue.

It would be a big win for the language if memory corruptions were impossible in
Calc programs.

Compatibility

All these future expansion items could be implemented without breaking existing
code.

Also, a goal of the language is to be as simple as possible. This means that |
have intentionally not implemented structures that might be marginally useful but
would make the language significantly more complex.

| suggest that the following are intentionally not implemented:

198

Function calls in #if expressions

#if ssearch(server name, “Internal”) != -1

Mixing lists and arrays

varl[“abc”, 100] = 200;

38. Licence
The Calc programming language is copyrighted the author, Mark Mcliroy.

Licence is hereby given for the development of compilers and interpreters of the
language, without licence fees.

199

